• Title/Summary/Keyword: prior 모델

Search Result 582, Processing Time 0.021 seconds

Noise Removal using a Convergence of the posteriori probability of the Bayesian techniques vocabulary recognition model to solve the problems of the prior probability based on HMM (HMM을 기반으로 한 사전 확률의 문제점을 해결하기 위해 베이시안 기법 어휘 인식 모델에의 사후 확률을 융합한 잡음 제거)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.295-300
    • /
    • 2015
  • In vocabulary recognition using an HMM model which models the prior distribution for the observation of a discrete probability distribution indicates the advantages of low computational complexity, but relatively low recognition rate. The Bayesian techniques to improve vocabulary recognition model, it is proposed using a convergence of two methods to improve recognition noise-canceling recognition. In this paper, using a convergence of the prior probability method and techniques of Bayesian posterior probability based on HMM remove noise and improves the recognition rate. The result of applying the proposed method, the recognition rate of 97.9% in vocabulary recognition, respectively.

Evolutionary Learning of Hypernetwork Classifiers Based on Sequential Bayesian Sampling for High-dimensional Data (고차 데이터 분류를 위한 순차적 베이지안 샘플링을 기반으로 한 하이퍼네트워크 모델의 진화적 학습 기법)

  • Ha, Jung-Woo;Kim, Soo-Jin;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.336-338
    • /
    • 2012
  • 본 연구에서는 고차 데이터 분류를 위해 순차적 베이지만 샘플링 기반의 진화연산 기법을 이용한 하이퍼네트워크 모델의 학습 알고리즘을 제시한다. 제시하는 방법에서는 모델의 조건부 확률의 사후(posterior) 분포를 최대화하도록 학습이 진행된다. 이를 위해 사전(prior) 분포를 문제와 관련된 사전지식(prior knowledge) 및 모델 복잡도(model complexity)로 정의하고, 측정된 모델의 분류성능을 우도(likelihood)로 사 용하며, 측정된 사전분포와 우도를 이용하여 모델의 적합도(fitness)를 정의한다. 이를 통해 하이퍼네트워크 모델은 고차원 데이터를 효율적으로 학습 가능할 뿐이 아니라 모델의 학습시간 및 분류성능이 개선될 수 있다. 또한 학습 시에 파라미터로 주어지던 하이퍼에지의 구성 및 모델의 크기가 학습과정 중에 적응적으로 결정될 수 있다. 제안하는 학습방법의 검증을 위해 본 논문에서는 약 25,000개의 유전자 발현정보 데이터셋에 대한 분류문제에 모델을 적용한다. 실험 결과를 통해 제시하는 방법이 기존 하이퍼네트워크 학습 방법 뿐 아니라 다른 모델들에 비해 우수한 분류 성능을 보여주는 것을 확인할 수 있다. 또한 다양한 실험을 통해 사전분포로 사용된 사전지식이 모델 학습에 끼치는 영향을 분석한다.

A Parallel Memory Suitable for SIMD Architecture Processing High-Definition Image Haze Removal in High-Speed (고화질 영상에서 고속 안개 제거를 위한 SIMD 구조에 적합한 병렬메모리)

  • Lee, Hyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.9-16
    • /
    • 2014
  • Since the haze removal algorithm using dark channel prior was introduced, many researches for improving processing speed have been addressed even if it presented impressive results. Remarkable one is using median dark channel prior. Although it has been considered as a very attactive method, processing speed is as low as ever. So, a parallel memory model which is suitable for SIMD architecture processing haze removal on high-definition images in high-speed is introduced in this paper. The proposed parallel memory model allows to access n pixels simultaneously. It is also support stride 3, 5, 7, and 11 in order to execute convolution mask operations, e.g., median filter. The proposed parallel memory model can therefore support enough data bandwidth to process the algorithm using median dark channel prior in high-speed.

Image Deblurring Based on ADMM and Deep CNN Denoiser Image Prior (ADMM과 깊은 합성곱 신경망 잡음 제거기 이미지 Prior에 기반한 이미지 디블러링)

  • Kwon, Junhyeong;Soh, Jae Woong;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.680-683
    • /
    • 2020
  • 오래 전부터 모델 기반 최적화 방법이 이미지 디블러링을 위해 널리 사용되어 왔고, 최근에는 학습 기반 기술이 영상 디블러링에서 좋은 성과를 보이고 있다. 본 논문은 ADMM과 깊은 합성곱 신경망 잡음 제거기 이미지 prior를 이용하여 모델 기반 최적화 방법의 장점과 학습 기반 방법의 장점을 모두 활용할 수 있는 방법을 제안한다. 본 방법을 이용하여 기존 방법보다 더 좋은 디블러링 성능을 얻을 수 있었다.

  • PDF

Region Growing Based Variable Window Size Decision Algorithm for Image Denoising (영상 잡음 제거를 위한 영역 확장 기반 가변 윈도우 크기 결정 알고리즘)

  • 엄일규;김유신
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.111-116
    • /
    • 2004
  • It is essential to know the information about the prior model for wavelet coefficients, the probability distribution of noise, and the variance of wavelet coefficients for noise reduction using Bayesian estimation in wavelet domain. In general denoising methods, the signal variance is estimated from the proper prior model for wavelet coefficients. In this paper, we propose a variable window size decision algorithm to estimate signal variance according to image region. Simulation results shows the proposed method have better PSNRs than those of the state of art denoising methods.

Spatial Database Modeling based on Constraint (제약 기반의 공간 데이터베이스 모델링)

  • Woo, Sung-Koo;Ryu, Keun-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.81-95
    • /
    • 2009
  • The CDB(Constraint Database) model is a new paradigm for massive spatial data processing such as GIS(Geographic Information System). This paper will identify the limitation of the schema structure and query processing through prior spatial database research and suggest more efficient processing mechanism of constraint data model. We presented constraint model concept, presentation method, and the examples of query processing. Especially, we represented TIN (Triangulated Irregular Network) as a constraint data model which displays the height on a plane data and compared it with prior spatial data model. Finally, we identified that we were able to formalize spatial data in a simple and refined way through constraint data modeling.

  • PDF

Visibility Enhancement of Underwater Image Using a Color Transform Model (색상 변환 모델을 이용한 수중 영상의 가시성 개선)

  • Jang, Ik-Hee;Park, Jeong-Seon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.645-652
    • /
    • 2015
  • In underwater, such as fish farm and sea, turbidity is increased by water droplets and various suspended, therefore light attenuation occurs depending on the depth also caused by the scattering effect of light float. In this paper, in order to improve the visibility of underwater images obtained from these aquatic environment, we propose a visibility enhancement method using a haze removal method based on dark channel prior and a trained color transform model. In order to train a color transform model, we used underwater pattern images captured from Pohang and Yeosu, and to measure the performance of the proposed method, we carried out experiment of visibility enhancement using underwater images collected from Yeosu, Geomundo and Philippines. The results show that the proposed method can improve the visibility of underwater images of various locations.

Bayesian Image Denoising with Mixed Prior Using Hypothesis-Testing Problem (가설-검증 문제를 이용한 혼합 프라이어를 가지는 베이지안 영상 잡음 제거)

  • Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.34-42
    • /
    • 2006
  • In general, almost information is stored in only a few wavelet coefficients. This sparse characteristic of wavelet coefficient can be modeled by the mixture of Gaussian probability density function and point mass at zero, and denoising for this prior model is peformed by using Bayesian estimation. In this paper, we propose a method of parameter estimation for denoising using hypothesis-testing problem. Hypothesis-testing problem is applied to variance of wavelet coefficient, and $X^2$-test is used. Simulation results show our method outperforms about 0.3dB higher PSNR(peak signal-to-noise ratio) gains compared to the states-of-art denoising methods when using orthogonal wavelets.

AHP와 ANP의 결합을 통한 합리적 예측모델구축

  • 이태희;김홍재
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.229-232
    • /
    • 1997
  • This study is pursuited to construct the reasonable forecasting model through the combining AHP with ANP. It may be considered to be advanced study for prior various combining forecasts methods. Although prior studies are constrained to single or two criteria in selecting the optimal forecasting method, this study extend it to multi-criteria, inner and outer-dependence of clusters and elements, and feedback effect in hierarchy. A brief illustration is provided, and limitations of this study are presented.

  • PDF

Dark Channel Prior 기반 해무 강도 예측 방법에 관한 연구

  • 정태건;임태호
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.214-216
    • /
    • 2022
  • 본 논문에서는 시정계에 비해서 낮은 가격으로 개발이 가능한 카메라 시스템과 촬영한 사진으로 해무 강도를 측정하는 방안을 제안한다. 항로표지에 부착이 가능하고 360도 촬영이 가능한 카메라 시스템 구현 내용을 설명하고 해무의 강도를 측정하기 위해 안개 모델과 Dark Channel Prior(DCP)를 이용해 해무 강도를 측정하는 알고리즘을 개발하였다.

  • PDF