• 제목/요약/키워드: printing strength

검색결과 287건 처리시간 0.027초

레이저 적층제조기술로 제작한 폴리아미드 12 시편의 인장특성 연구 (Study on Tensile Properties of Polyamide 12 produced by Laser-based Additive Manufacturing Process)

  • 김무선
    • 한국산학기술학회논문지
    • /
    • 제20권11호
    • /
    • pp.217-223
    • /
    • 2019
  • 복합 형상 부품 제작 및 제작 공정의 일체화 장점으로 3D 프린팅 기술의 적용 분야가 확대되고 있으며, 지속적인 연구 개발에 의해 다양한 기술방안들이 등장하고 있다. 대표적인 기술로는 파우더 형태의 소재 위에 레이저를 조사함으로써 원하는 영역을 소결 및 적층 제작하는 방식의 SLS 기술이 있으며, 고성능의 엔지니어링 플라스틱을 활용하여 실제 사용할 수 있는 부품을 제작하는 사례가 늘어나고 있다. 본 연구에서는 활용도가 높은 고분자 소재인 폴리아미드 12 소재 및 글라스 비드가 보강된 폴리아미드 12 소재를 대상으로 인장시편을 제작하여 시편 제작 방향 및 인장 시험 온도에 따른 특성 결과를 비교 분석하였다. 시편 제작방향은 작업 평면 기준으로 0°, 45°, 90° 로 구분하였으며, 인장시험온도는 -25℃, 25℃, 60℃로 조건을 구분하였다. 시험 결과로부터 제작 방향이 90°에 가까울수록 두 소재 모두 탄성률의 미세한 감소를 보였으며, 인장강도는 PA12보다 글라스 비드 보강 PA12가 제작방향에 대한 의존성을 명확하게 보였다. 또한 시험 온도 증가에 따라 탄성률 및 인장강도의 저하를 확인할 수 있었다.

건물 내 주파수 선택적 공간 구현을 위한 인쇄전자 기술 기반 필름형 주파수 선택 표면구조 설계 (Design of Film-Type Frequency Selective Surface Structure Based on Printed Electronic Technology to Implement Frequency-Selective Space in Buildings)

  • 이인곤;윤선홍;홍익표
    • 한국전자파학회논문지
    • /
    • 제28권12호
    • /
    • pp.1007-1010
    • /
    • 2017
  • 본 논문에서는 건물 내에서 통신성능 저하의 원인이 되는 인접 채널의 신호를 제어하기 위해 대역 저지 특성을 갖는 주파수 선택 표면구조를 설계하였다. 제안된 구조는 입사파의 편파 및 입사각에 안정적인 주파수 특성 구현을 위해 프랙탈 형상 기반의 소형화된 단위구조를 사용하였으며, 실제 적용성을 고려, 적은 제작비용으로 대량생산이 용이한 인쇄전자 기술을 이용하여 얇은 필름형 주파수 선택 표면구조를 제작하였다. 전통적인 회로제작 방식인 PCB 공정이 아닌 전도성 Ag 잉크를 이용한 스크린 프린팅 공정을 통해 생산성 및 환경성을 개선하였으며, 설계한 결과를 바탕으로 자유공간 측정을 통해 입사파의 편파 및 입사각에 대한 안정적인 특성을 검증하고, 실제 건물 내벽에 적용 후, 수신 신호강도 측정을 통해 주파수 선택 성능을 확인하였다.

에탄올 훈증처리한 3D 프린팅 PVB 출력물의 기계적 특성 (Mechanical Properties of PVB 3D Printed Output Fumigated with Ethanol)

  • 강은영;임지호;최승곤;문종욱;이유경;이선곤;정대용
    • 한국재료학회지
    • /
    • 제30권7호
    • /
    • pp.369-375
    • /
    • 2020
  • FDM 3D printing structures have rough surfaces and require post-treatment to improve the properties. Fumigation is a representative technique for removing surface unevenness. Surface treatment by fumigation proceeds by dissolving the surface of the protruding structure using a vaporized solvent. In this study, 3D printed PVB outputs are surface-treated with ethyl-alcohol fumigation. As the fumigation time increases, the surface flattens as ethanol dissolves the mountains on the surface of PVB and the surface valleys are filled with dissolved PVB. Through the fumigation process, the mechanical strength tends to decrease, and deformation rate increases. Ethanol vapor permeates into PVB, widening the distance between chains and resulting in weak bonding strength between chains. In order to confirm the effect of fumigation only, an annealing process is performed at 80 ℃ for 1, 5, 10, 30, and 50 minutes and the results of the fumigation are compared.

LTCC 보호층 형성에 따른 박막 전극패턴에 관한 연구 (Effect of Protective layer on LTCC Substrate for Thin Metal Film Patterns)

  • 김용석;유원희;장병규;박정환;유제광;오용수
    • 한국재료학회지
    • /
    • 제19권7호
    • /
    • pp.349-355
    • /
    • 2009
  • Metal thin film patterns on a LTCC substrate, which was connected through inner via and metal paste for electrical signals, were formed by a screen printing process that used electric paste, such as silver and copper, in a conventional method. This method brought about many problems, such as non uniform thickness in printing, large line spaces, and non-clearance. As a result of these problems, it was very difficult to perform fine and high resolution for high frequency signals. In this study, the electric signal patterns were formed with the sputtered metal thin films (Ti, Cu) on an LTCC substrate that was coated with protective oxide layers, such as $TiO_2$ and $SiO_2$. These electric signal patterns' morphology, surface bonding strength, and effect on electro plating were also investigated. After putting a sold ball on the sputtered metal thin films, their adhesion strength on the LTCC substrate was also evaluated. The protective oxide layers were found to play important roles in creating a strong design for electric components and integrating circuit modules in high frequency ranges.

사출금형코어 및 성형수지 변화에 따른 두께 방향 수축률에 관한 연구 (A Study on The Thickness Shrinkage of Injection Molded Parts with The Variation of Injection Mold Core and Molding Materials)

  • 신성현;정의철;김미애;채보혜;손정언;김상윤;윤경환;이성희
    • Design & Manufacturing
    • /
    • 제13권2호
    • /
    • pp.17-21
    • /
    • 2019
  • In this study, selective laser sintered 3D printing mold core and metal core were used to investigate the difference of the thickness shrinkage from the gate of the injection molded part at a constant interval. SLS 3D printing mold core was made of nylon-based PA2200 powder and the metal core was manufactured by conventional machining method. As the PA2200 powder material has low strength, thermal conductivity and high specific heat characteristics compared with metal, molding conditions were set with the consideration of molten temperature and injection pressure. Crystalline resin(PP) and amorphous resin(PS) with low melting temperature and viscosity were selected for the injection molding experiment. Cooling time for processing condition was selected by checking the temperature change of the cores with a cavity temperature sensor. The cooling time of the 3D printing core was required a longer time than that of the metal core. The thickness shrinkage of the molded part compared to the core depth was measured from the gate by a constant interval. It was shown that the thickness shrinkage of the 3D printing core was 2.02 ~ 4.34% larger than that of metal core. In additions, in the case of metal core, thickness shrinkage was increased with distance from the gate, on the contrary, in the case of polymer core showed reversed aspect.

Studies on the Printability of Hanji by Sizing and Calendering

  • Kang Jin-Ha;Seo Seung-Man;Park Seong-Cheol
    • 펄프종이기술
    • /
    • 제37권5호통권113호
    • /
    • pp.70-77
    • /
    • 2005
  • The development of printable Hanji is regarded as an important work to create a new demand of Hanji in information-oriented era. Hanji has rougher surface, huger absorption of ink and lower optical properties and printabilities than common printing papers. Improving those shortcomings of Hanji is required to be printable Hanji. Sizing and calendering have known as a way to make properties of paper good. Accordingly, this research was performed to find out useful sizing agents for reforming its drawbacks. Four sizing agents (CMC, com starch, PVA, AKD) were used in this research. The optical properties and the printabilities of sized Hanji were tested. The obtained results were as follows. Based on concentration, each sizing agent was prepared. These were CMC(0.5, 1, $1.5\%$), corn starch(1, 2, $3\%$), PVA(1, 5, $10\%$), AKD(0.5, 0.1, $0.15\%$) respectively. After sizing, we performed calendering treatment with pressure of 0.5, $1\;kgf/cm^2$. All the sizing agents and calendering treatment improved the properties of Hanji to some extent. Particularly, com starch was good for gloss. In case of printability, $1\%$ AKD with $1\;kgf/cm^2$ was recommendable for typography ink density, $3\%$ com starch with $0.5\;kgf/cm^2$, inkjet ink density, $2\%$ com starch with $0.5\;kgf/cm^2$, inkjet ink girth. PVA and AKD without calendering were counter-effective agents for inkjet ink density. Printable Hanji is required to have not only better surface strength enough to appear non-picking, higher ink density and lower show-through than base paper but also the lowest ink girth in comparison with base paper. When referring to them, efficient sizing agents were regarded as $0.1\%$ AKD with $1\;kgf/cm^2$, calender pressure, for typography printing and $2\%$ com starch with $0.5\;kgf/cm^2$, calender pressure, for inkjet printing.

적층공정법으로 제작된 CoCrMo 합금의 복합열처리 효과 (Complex heat-treatment effects on as-built CoCrMo alloy)

  • 이정일;김형균;정경환;김강민;손용;류정호
    • 한국결정성장학회지
    • /
    • 제28권6호
    • /
    • pp.250-255
    • /
    • 2018
  • 본 연구에서는 3D-프린팅 적층 공정으로 제조한 인공관절용 CoCrMo 합금 소재의 HIP 처리를 포함한 복합열처리 후 소재의 인장특성, 내마모 특성 등의 기계적 특성과 결정구조 및 미세조직 등의 재료특성 변화를 고찰하였다. 내부마이크로 기공을 제거하기 위한 HIP 열처리와 금속탄화물 생성을 위한 상압열처리 및 금속탄화물의 균질화를 위한 용체화 열처리를 거치는 복합열처리 공정을 실시하여 인공관절 소재로서의 특성을 부여하고자 하였다. 3D-프린팅 적층 공정으로 제조한 인공관절용 CoCrMo 합금 소재의 복합열처리 효과는 HIP 공정중의 치밀화 과정, 상압열처리 중의 금속탄화물 생성 및 용체화 열처리 과정중의 금속탄화물의 균질화 효과임을 XRD, FE-SEM, EDS 분석으로 확인하였다.

선택적 레이저 조형된 AlSi10Mg합금의 후열처리에 따른 Si-rich상 형상변화가 기계적 특성에 미치는 영향 (Influence of Si-rich Phase Morphologies on Mechanical Properties of AlSi10Mg Alloys processed by Selective Laser Melting and Post-Heat Treatment)

  • 남정우;엄영성;김경태;손인준
    • 한국분말재료학회지
    • /
    • 제28권2호
    • /
    • pp.134-142
    • /
    • 2021
  • In this study, AlSi10Mg powders with average diameters of 44 ㎛ are additively manufactured into bulk samples using a selective laser melting (SLM) process. Post-heat treatment to reduce residual stress in the as-synthesized sample is performed at different temperatures. From the results of a tensile test, as the heat-treatment temperature increases from 270 to 320℃, strength decreases while elongation significantly increases up to 13% at 320℃. The microstructures and tensile properties of the two heat-treated samples at 290 and 320℃, respectively, are characterized and compared to those of the as-synthesized samples. Interestingly, the Si-rich phases that network in the as-synthesized state are discontinuously separated, and the size of the particle-shaped Si phases becomes large and spherical as the heat-treatment temperature increases. Due to these morphological changes of Si-rich phases, the reduction in tensile strengths and increase in elongations, respectively, can be obtained by the post-heat treatment process. These results provide fundamental information for the practical applications of AlSi10Mg parts fabricated by SLM.

스크린 프린팅으로 제작된 $Pb(Zr,\;Ti)O_3$ 후막의 제작과 전기적 특성 (Preparation and Electrical Properties of Lead Zirconate Titanate Thick Films Fabricated by Screen-Printing Method)

  • 박상만;이성갑
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권9호
    • /
    • pp.429-433
    • /
    • 2006
  • PZT(80/0) powder was prepared by a sol-gel method and PZT thick films were fabricated by the screen-printing method on the alumina substrates. The coating and drying procedure was repeated 4 times. And then the PZT(20/80) precusor solution was spin-coated on the PZT thick films. A concentration of a coating solution was 0.5mol/L and the number of coating was varied from 0 to 6. The porosity decreased and the grain size increased with increasing the number of coatings. The thickness of the PZT-6(6: number of coatings) films was about $60{\mu}m$. The relative dielectric constant increased and the dielectric loss decreased with increasing the number of PZT(20/80) sol coatings. The relative dielectric constant and dielectric loss of the PZT-6 thick film were 275 and 3.5%, respectively. The remanent polarization, coercive field and breakdown strength of the PZT-6 film were $19.8{\mu}C/cm^2$, 13.7kV/cm and 130kV/cm, respectively.

FFF 방식으로 제작된 PLA의 열화에 따른 선형탄성 및 초탄성 모델의 비교에 관한 연구 (A Comparative Study of the Linear-elastic and Hyperelastic Models for Degradation of PLA Prepared using Fused Filament Fabrication)

  • 최나연;신병철;장성욱
    • 한국기계가공학회지
    • /
    • 제19권3호
    • /
    • pp.1-7
    • /
    • 2020
  • Fused filament fabrication (FFF) is a process extruding and stacking materials. PLA materials are one of the most frequently used materials for FFF method of 3D printing. Polylactic acid (PLA)-based materials are among the most widely used materials for FFF-based three-dimensional (3D) printing. PLA is an eco-friendly material made using starch extracted from corn, as opposed to plastic made using conventional petroleum resin; PLA-based materials are used in various fields, such as packaging, aerospace, and medicines. However, it is important to analyze the mechanical properties of theses materials, such as elastic strength, before using them as structural materials. In this study, the reliability of PLA-based materials is assessed through an analysis of the changes in the linear elasticity of these materials under thermal degradation by applying a hyperelastic analytical model.