• Title/Summary/Keyword: principle component analysis

Search Result 386, Processing Time 0.036 seconds

Development of Prediction Model using PCA for the Failure Rate at the Client's Manufacturing Process (주성분 분석을 이용한 고객 공정의 불량률 예측 모형 개발)

  • Jang, Youn-Hee;Son, Ji-Uk;Lee, Dong-Hyuk;Oh, Chang-Suk;Lee, Duek-Jung;Jang, Joongsoon
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.98-103
    • /
    • 2016
  • Purpose: The purpose of this paper is to get a meaningful information for improving manufacturing quality of the products before they are produced in client's manufacturing process. Methods: A variety of data mining techniques have been being used for wide range of industries from process data in manufacturing factories for quality improvement. One application of those is to get meaningful information from process data in manufacturing factories for quality improvement. In this paper, the failure rate at client's manufacturing process is predicted by using the parameters of the characteristics of the product based on PCA (Principle Component Analysis) and regression analysis. Results: Through a case study, we proposed the predicting methodology and regression model. The proposed model is verified through comparing the failure rates of actual data and the estimated value. Conclusion: This study can provide the guidance for predicting the failure rate on the manufacturing process. And the manufacturers can prevent the defects by confirming the factor which affects the failure rate.

A Study on the Classification of Islands by PCA ( I ) (PCA에 의한 도서분류에 관한 연구( I ))

  • 이강우
    • The Journal of Fisheries Business Administration
    • /
    • v.14 no.2
    • /
    • pp.1-14
    • /
    • 1983
  • This paper considers a classification of the 88 islands located at Kyong-nam area in Korea, using by examples of 12 components of the islands. By means of principal component analysis 2 principle components were extracted, which explained a total of 73.7% of the variance. Using an eigen variable criterion (λ>1), no further principle components were discussed. Principal component 1 and 2 explained 63.4% and 10.3% of the total variance respectively, The representation of the unrelated factor scores along the first and second principal axes produced a new information with respect to the classification of the islands. Based upon the representation, 88 islands were classified into 6 groups i. e. A, B, C, D, E, and F according to similarity of the components among them in this paper. The "Group F" belongs to a miscellaneous assortment that does not fit into the logical category. category.

  • PDF

A Comparative Study on Factor Recovery of Principal Component Analysis and Common Factor Analysis (주성분분석과 공통요인분석에 대한 비교연구: 요인구조 복원 관점에서)

  • Jung, Sunho;Seo, Sangyun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.933-942
    • /
    • 2013
  • Common factor analysis and principal component analysis represent two technically distinctive approaches to exploratory factor analysis. Much of the psychometric literature recommends the use of common factor analysis instead of principal component analysis. Nonetheless, factor analysts use principal component analysis more frequently because they believe that principal component analysis could yield (relatively) less accurate estimates of factor loadings compared to common factor analysis but most often produce similar pattern of factor loadings, leading to essentially the same factor interpretations. A simulation study is conducted to evaluate the relative performance of these two approaches in terms of factor pattern recovery under different experimental conditions of sample size, overdetermination, and communality.The results show that principal component analysis performs better in factor recovery with small sample sizes (below 200). It was further shown that this tendency is more prominent when there are a small number of variables per factor. The present results are of practical use for factor analysts in the field of marketing and the social sciences.

Optimal Introductive Sequence of Hedge Fund Baskets in the Korean Market (한국 헤지펀드 시장의 최적의 투자전략 도입순서에 대한 연구)

  • Kwon, Do-Gyun;Park, Hee Hwan;Kang, Dong Hun;Kim, Min Jeong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.4
    • /
    • pp.254-257
    • /
    • 2012
  • Hedge funds can be established in Korea after the deregulation about setting up private equity funds on September, 2011. Although the variety of asset allocation strategies is the strength of hedge funds, most of Korean hedge funds uses only the equity long/short strategy. Therefore, it is need to introduce other strategies into Korea hedge funds, however all strategies can not be adopted at once because of the infrastructure of Korea financial market. In this paper, we find the optimal introductive order of strategies for Korea hedge fund in view of individual or institutional investors. For this analysis, HFRI data are used for the historical return of each hedge fund strategy and three methods (network visualization, principle component analysis and efficient frontier optimization) are used for finding the optimal order.

The Detection of Yellow Sand Dust Using the Infrared Hybrid Algorithm

  • Kim, Jae-Hwan;Ha, Jong-Sung;Lee, Hyun-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.370-373
    • /
    • 2005
  • We have developed Hybrid algorithm for yellow sand detection. Hybrid algorithm is composed of three methods using infrared bands. The first method used the differential absorption in brightness temperature difference between $11\mu m\;and\;12\mu m$ (BID _1), through which help distinguish the yellow sand from various meteorological clouds. The second method uses the brightness temperature difference between $3.7\mu m\;and\;11\mu m$ (BID_2). The technique would be most sensitive to dust loading during the day when the BID _2 is enhanced by reflection of $3.7\mu m$ solar radiation. The third one is a newly developed algorithm from our research, the so-called surface temperature variation method (STY). We have applied the three methods to MODIS for derivation of the yellow sand dust and in conjunction with the Principle Component Analysis (PCA), a form of eigenvector statistical analysis. PCI shows better results for yellow sand detection in comparison with the results from individual method. The comparison between PCI and MODIS aerosols optical depth (AOD) shows remarkable good correlations during daytime and relatively good correlations over the land.

  • PDF

Chemical Composition and Seasonal Variation of Acid Deposition in Chiang Mai, Thailand

  • Sillapapiromsuk, S.;Chantara, S.
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.93-98
    • /
    • 2010
  • This study aims to determine the chemical composition and seasonal variation of atmospheric acid deposition in order to identify possible sources contributing to precipitation. Sampling and analysis of 132 wet deposition samples were carried out from January to December 2008 at Mae Hia Research Center, Chiang Mai University, Chiang Mai Province. Total precipitation was 1,286.7 mm. Mean electro-conductivity and pH values were 0.94 mS/m and 6.27, respectively. Major cations ($Na^+$, ${NH_4}^+$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$) and major anions ($HCOO^-$, $CH_3COO^-$, $Cl^-$, ${NO_3}^-$, and ${SO_4}^{2-}$) were determined by Ion Chromatography. The relative volume weight mean concentrations of anions, in descending order, were ${SO_4}^{2-}$ > ${NO_3}^-$ > $Cl^-$ > $CH_3COO^-$ > $HCOO^-$ and those of cations were $NH_4^+$ > $Ca^{2+}$ > $Mg^{2+}$ > $K^{+}$ > $Na^+$. Results of a principle component analysis highlighted the influence of various possible sources of ions such as agricultural activity, fuel combustion, marine sources, soil resuspension, and biomass burning.

The Detection of Yellow Sand with Satellite Infrared bands

  • Ha, Jong-Sung;Kim, Jae-Hwan;Lee, Hyun-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.403-406
    • /
    • 2006
  • An algorithm for detection of yellow sand aerosols has been developed with infrared bands. This algorithm is a hybrid algorithm that has used two methods combined. The first method used the differential absorption in brightness temperature difference between $11{\mu}m\;and\;12{\mu}m\;(BTD1)$. The radiation at $11{\mu}m$ is absorbed more than at $12{\mu}m$ when yellow sand is loaded in the atmosphere, whereas it will be the other way around when cloud is present. The second method uses the brightness temperature difference between $3.7{\mu}m\;and\;11{\mu}m(BTD2)$. This technique is sensitive to dust loading, which the BTD2 is enhanced by reflection of $3.7{\mu}m$ solar radiation. First the Principle Component Analysis (PCA), a form of eigenvector statistical analysis from the two methods, is performed and the aerosol pixel with the lowest 10% of the eigenvalue is eliminated. Then the aerosol index (AI) from the combination of BTD 1 and 2 is derived. We applied this method to Multi-functional Transport Satellite-l Replacement (MTSAT-1R) data and obtained that the derived AI showed remarkably good agreements with Ozone Mapping Instrument (OMI) AI and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth.

Recent Research Trends of Process Monitoring Technology: State-of-the Art (공정 모니터링 기술의 최근 연구 동향)

  • Yoo, ChangKyoo;Choi, Sang Wook;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.233-247
    • /
    • 2008
  • Process monitoring technology is able to detect the faults and the process changes which occur in a process unpredictably, which makes it possible to find the reasons of the faults and get rid of them, resulting in a stable process operation, high-quality product. Statistical process monitoring method based on data set has a main merit to be a tool which can easily supervise a process with the statistics and can be used in the analysis of process data if a high quality of data is given. Because a real process has the inherent characteristics of nonlinearity, non-Gaussianity, multiple operation modes, sensor faults and process changes, however, the conventional multivariate statistical process monitoring method results in inefficient results, the degradation of the supervision performances, or often unreliable monitoring results. Because the conventional methods are not easy to properly supervise the process due to their disadvantages, several advanced monitoring methods are developed recently. This review introduces the theories and application results of several remarkable monitoring methods, which are a nonlinear monitoring with kernel principle component analysis (KPCA), an adaptive model for process change, a mixture model for multiple operation modes and a sensor fault detection and reconstruction, in order to tackle the weak points of the conventional methods.

Classification Technique for Ultrasonic Weld Inspection Signals using a Neural Network based on 2-dimensional fourier Transform and Principle Component Analysis (2차원 푸리에변환과 주성분분석을 기반한 초음파 용접검사의 신호분류기법)

  • Kim, Jae-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.590-596
    • /
    • 2004
  • Neural network-based signal classification systems are increasingly used in the analysis of large volumes of data obtained in NDE applications. Ultrasonic inspection methods on the other hand are commonly used in the nondestructive evaluation of welds to detect flaws. An important characteristic of ultrasonic inspection is the ability to identify the type of discontinuity that gives rise to a peculiar signal. Standard techniques rely on differences in individual A-scans to classify the signals. This paper proposes an ultrasonic signal classification technique based on the information tying in the neighboring signals. The approach is based on a 2-dimensional Fourier transform and the principal component analysis to generate a reduced dimensional feature vector for classification. Results of applying the technique to data obtained from the inspection of actual steel welds are presented.