• 제목/요약/키워드: principal fitted response reduction

검색결과 2건 처리시간 0.014초

MBRDR: R-package for response dimension reduction in multivariate regression

  • Heesung Ahn;Jae Keun Yoo
    • Communications for Statistical Applications and Methods
    • /
    • 제31권2호
    • /
    • pp.179-189
    • /
    • 2024
  • In multivariate regression with a high-dimensional response Y ∈ ℝr and a relatively low-dimensional predictor X ∈ ℝp (where r ≥ 2), the statistical analysis of such data presents significant challenges due to the exponential increase in the number of parameters as the dimension of the response grows. Most existing dimension reduction techniques primarily focus on reducing the dimension of the predictors (X), not the dimension of the response variable (Y). Yoo and Cook (2008) introduced a response dimension reduction method that preserves information about the conditional mean E(Y | X). Building upon this foundational work, Yoo (2018) proposed two semi-parametric methods, principal response reduction (PRR) and principal fitted response reduction (PFRR), then expanded these methods to unstructured principal fitted response reduction (UPFRR) (Yoo, 2019). This paper reviews these four response dimension reduction methodologies mentioned above. In addition, it introduces the implementation of the mbrdr package in R. The mbrdr is a unique tool in the R community, as it is specifically designed for response dimension reduction, setting it apart from existing dimension reduction packages that focus solely on predictors.

다변량회귀에서 주선택 반응변수 차원축소 (Principal selected response reduction in multivariate regression)

  • 유재근
    • 응용통계연구
    • /
    • 제34권4호
    • /
    • pp.659-669
    • /
    • 2021
  • 다변량 회귀분석은 경시적 자료분석이나 함수적 자료분석 등 다양한 분야에서 빈번하게 사용되는 통계적 방법론이다. 다변량 회귀분석은 설명변수의 차원 뿐만 아니라 반응변수의 차원때문에 일변량 회귀분석에서 보다 차원의 저주문제에 더 강한 영향을 받는다. 이러한 문제를 해결하기 위해 최근 Yoo (2018)와 Yoo (2019a)에 세 가지 모형기반 반응변수 차원축소 방법이 제시되었다. 하지만 Yoo (2019a)에서 제시한 기본 방법은 모의실험 결과 모형에 가장 영향을 덜 받지만, 다른 두 방법 중 더 나은 방법보다 더 좋은 추정결과를 제시하지 못한다. 이러한 단점을 극복하기 위해 본 논문에서는 기본 방법의 결과 다른 두 방법의 결과를 비교하여, 자료에 따라 최선의 방법을 제시하는 선택 알고리듬을 제시하고, 이를 주선택 반응변수 차원축소라 명명한다. 다양한 모의실험 결과 주선택 반응변수 차원축소는 Yoo (2019a)의 기본방법보다 더 정확하게 차원을 축소하고, 모든 경우에 있더 더 바람직한 방법을 선택함을 확인할 수 있다. 이러한 결과로 제안한 주선택 반응변수의 차원축소 방법의 실제적 유용성을 확인할 수 있다.