Communications for Statistical Applications and Methods
/
제29권6호
/
pp.721-733
/
2022
In this paper we compare parameter estimation by Grassmann manifold optimization and sequential candidate set algorithm in a structured principal fitted component (PFC) model. The structured PFC model extends the form of the covariance matrix of a random error to relieve the limits that occur due to too simple form of the matrix. However, unlike other PFC models, structured PFC model does not have a closed form for parameter estimation in dimension reduction which signals the need of numerical computation. The numerical computation can be done through Grassmann manifold optimization and sequential candidate set algorithm. We conducted numerical studies to compare the two methods by computing the results of sequential dimension testing and trace correlation values where we can compare the performance in determining dimension and estimating the basis. We could conclude that Grassmann manifold optimization outperforms sequential candidate set algorithm in dimension determination, while sequential candidate set algorithm is better in basis estimation when conducting dimension reduction. We also applied the methods in real data which derived the same result.
Communications for Statistical Applications and Methods
/
제29권5호
/
pp.615-627
/
2022
Principal Fitted Component (PFC) is a semi-parametric sufficient dimension reduction (SDR) method, which is originally proposed in Cook (2007). According to Cook (2007), the PFC has a connection with other usual non-parametric SDR methods. The connection is limited to sliced inverse regression (Li, 1991) and ordinary least squares. Since there is no direct comparison between the two approaches in various forward regressions up to date, a practical guidance between the two approaches is necessary for usual statistical practitioners. To fill this practical necessity, in this paper, we newly derive a connection of the PFC to covariance methods (Yin and Cook, 2002), which is one of the most popular SDR methods. Also, intensive numerical studies have done closely to examine and compare the estimation performances of the semi- and non-parametric SDR methods for various forward regressions. The founding from the numerical studies are confirmed in a real data example.
In this paper, we investigate how the power consumption of a heat pump dryer depends on various factors in the drying process by analyzing variables that affect the power consumption. Since there are in general many variables that affect the power consumption, for a feasible analysis, we utilize the principal component analysis to reduce the number of variables (or dimensionality) to two or three. We find that the first component is correlated positively to the entrance temperature of various devices such as compressor, expander, evaporator, and the second, negatively to condenser. We then model the power consumption as a multiple regression with two and/or three transformed variables of the selected principal components. We find that fitted value from the multiple regression explains 80~90% of the observed value of the power consumption. This results can be applied to a more elaborate control of the power consumption in the heat pump dryer.
본 논문에서는 알츠하이머병이 유도된 형질전환 마우스로부터 획득한 혈소판 라만 스펙트럼의 분석을 위해 가우시안 모델을 이용한 커브 피팅으로 기준선을 추정하고 보정하는 방법을 제안하였다. 측정된 라만 스펙트럼은 의미 있는 정보와 불필요한 노이즈 성분인 기준선과 가산 노이즈를 포함하고 있다. 스펙트럼의 효율적인 분석을 위해 노이즈를 포함하고 있는 스펙트럼을 몇 개의 피크를 포함하는 영역으로 분할하고 각 로컬 영역의 스펙트럼을 가우시안 모델을 이용한 커브 피팅으로 모델링한다. 가산 노이즈는 원 스펙트럼을 이 델로 대체하는 과정에서 명백하게 제거된다. 피팅된 모델의 로컬 최저점을 linear, piecewise cubic Hermite, cubic spline 알고리즘으로 보간하고 기준선을 보정한다. 기준선을 보정한 피팅 모델은 PCA(principal component analysis) 방법을 이용하여 특징을 추출하고 SVM(support vector machine)과 MAP(maximum $a$ posteriori probability) 분류 방법으로 성능 비교 실험을 하였다. 실험 결과에 따르면 linear 보간법이 모든 주성분 수에 대한 분류율의 평균에서 우세하였고 특히 piecewise cubic Hermite 보간법은 주성분의 수가 5개인 경우에서 SVM 분류율이 약 97.3%로 가장 좋은 성능을 보였다. 또한 이전의 연구 결과와 비교를 통해 제안한 기준선 보정 방법이 혈소판 라만 스펙트럼의 분석에 효과적으로 적용될 수 있음을 확인하였다.
포인트 클라우드를 이용한 물체의 표현은 레이저 스캐너를 통해 공간을 스캔하여 점의 집합을 추출하고, 정합(Registration)을 통해 하나의 좌표계로 통합하는 과정을 거쳐 이루어진다. 정합이 완료된 포인트 클라우드 집합은 수학적 해석을 통해 의미 있는 영역, 형태, 잡음 등으로 분류되어 쓰이게 된다. 본 논문은 3차원 포인트 클라우드 데이터에서 실린더 형태의 굽은 영역 매칭을 목표로 한다. 매칭 절차는 포인트 클라우드에서 RANdom SAmple Consensus(RANSAC)을 통한 구(sphere) 적합(fitting)으로 실린더 형태의 점 후보군을 추출하여 중심과 반지름 데이터를 얻고, 추출된 중심점 데이터에서 주성분 분석(Principal Component Analysis)을 통해 굽은 영역인지 판별한 후 캣멀롬 스플라인(Catmull-Rom spline)으로 굽은 영역 매칭을 완료한다. 제안된 방법은 제약조건 및 분할 없이 중심축 추정에 이은 직선 및 굽은 형태의 실린더 추정으로 비교적 빠른 추정결과를 도출하고, 역설계의 작업효율을 높일 수 있을 것으로 기대된다.
Chung, Sun-Ok;Sudduth, Kenneth A.;Drummond, Scott T.;Kitchen, Newell R.
Journal of Biosystems Engineering
/
제39권4호
/
pp.377-388
/
2014
Purpose: Determining the spatial structure of data is important in understanding within-field variability for site-specific crop management. An understanding of the spatial structures present in the data may help illuminate interrelationships that are important in subsequent explanatory analyses, especially when site variables are correlated or are a combined response to multiple causative factors. Methods: In this study, correlation, principal component analysis, and single and nested variogram models were applied to soil electrical conductivity and chemical property data of two fields in central Missouri, USA. Results: Some variables that were highly correlated, or were strongly expressed in the same principal component, exhibited similar spatial ranges when fitted with a single variogram model. However, single variogram results were dependent on the active lag distance used, with short distances (30 m) required to fit short-range variability. Longer active lag distances only revealed long-range spatial components. Nested models generally yielded a better fit than single models for sensor-based conductivity data, where multiple scales of spatial structure were apparent. Gaussian-spherical nested models fit well to the data at both short (30 m) and long (300 m) active lag distances, generally capturing both short-range and long-range spatial components. As soil conductivity relates strongly to profile texture, we hypothesize that the short-range components may relate to the scale of erosion processes, while the long-range components are indicative of the scale of landscape morphology. Conclusion: In this study, we investigated the effect of changing active lag distance on the calculation of the range parameter. Future work investigating scale effects on other variogram parameters, including nugget and sill variances, may lead to better model selection and interpretation. Once this is achieved, separation of nested spatial components by factorial kriging may help to better define the correlations existing between spatial datasets.
Park, Jeong-Hyun;Park, Jong-Seo;Kim, Baek-Min;Suh, Ae-Sook
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
/
pp.278-281
/
2006
Korea Meteorological Administration(KMA) has issued the tropical storm(typhoon) warning or advisories when it was developed to tropical storm from tropical depression and a typhoon is expected to influence the Korean peninsula and adjacent seas. Typhoon information includes current typhoon position and intensity. KMA has used the Dvorak Technique to analyze the center of typhoon and it's intensity by using available geostationary satellites' images such as GMS, GOES-9 and MTSAT-1R since 2001. The Dvorak technique is so subjective that the analysis results could be variable according to analysts. To reduce the subjective errors, QuikSCAT seawind data have been used with various analysis data including sea surface temperature from geostationary meteorological satellites, polar orbit satellites, and other observation data. On the other hand, there is an advantage of using the Subjective Dvorak Technique(SDT). SDT can get information about intensity and center of typhoon by using only infrared images of geostationary meteorology satellites. However, there has been a limitation to use the SDT on operational purpose because of lack of observation and information from polar orbit satellites such as SSM/I. Therefore, KMA has established Advanced Objective Dvorak Technique(AODT) system developed by UW/CIMSS(University of Wisconsin-Madison/Cooperative Institude for Meteorological Satellite Studies) to improve current typhoon analysis technique, and the performance has been tested since 2005. We have developed statistical relationships to correct AODT CI numbers according to the SDT CI numbers that have been presumed as truths of typhoons occurred in northwestern pacific ocean by using linear, nonlinear regressions, and neural network principal component analysis. In conclusion, the neural network nonlinear principal component analysis has fitted best to the SDT, and shown Root Mean Square Error(RMSE) 0.42 and coefficient of determination($R^2$) 0.91 by using MTSAT-1R satellite images of 2005. KMA has operated typhoon intensity analysis using SDT and AODT since 2006 and keep trying to correct CI numbers.
다변량 자료분석에서 최근의 추세는 관측개체의 수 n이 커지는 외에 변수의 수 p가 큰사례들이 많아지고 있다는 것이다. n개 개체 각각에서 획득된 p개 변수들 $X_1$, $X_2$, $\ldots$, $X_p$ 가운데는 이름이나 개념적으로는 구분이 가능하지 만 실제로 거의 중복이 되는 변수들이 있을 수 있는데, 이들 변수들이 모두 분석에 포함되면 여러 문제가 유발될 수 있다. 예컨대 주성분 분석이나 인자분석에서는 중복 변수들이 주축(主軸, principal axis) 결정에, 관측개체 군집 화에서는 개체간 거리 산출에 왜곡된 영향을 줄 수 있다. 또한 목적변수가 지정된 지도학습(supervised learning)에서 설명변수들의 중복성은 추정모형의 안정성을 해치는 결과를 초래한다. 실제 자료 분석에서는 한 자료 세트가 여러 기법으로 탐색되고 다수의 모형이 추출되므로 변수세트를 최대한 절약적(parsimonious)으로 구성할 필요가 있다. 본 연구의 목적은 $X_1$, $X_2$, $\ldots$, $X_p$ 중에서 필요한 변수들은 선적하고 불필요한 변수들은 제거함으로써 주어진 변수세트를 보다 적은 크기의 변수세트로 대치하는 방법을 제시하는 데 있다. 제안 방법을 몇 개의 수치적 사례에 적용해 봄으로써 선적 변수와 제거변수간 관계의 시각화, 회귀모형에서의 유용성, 범주형 자료분석에서의 활용 등에 대해 논의 하고자 한다.
Objective: To evaluate the extent and aspect of stress to the cortical bone after application of a lateral force to a two-component orthodontic mini-implant (OMI, mini-implant) by using three-dimensional finite element analysis (FEA). Methods: The 3D-finite element models consisted of the maxilla, maxillary first molars, second premolars, and OMIs. The screw part of the OMI had a diameter of 1.8 mm and length of 8.5 mm and was placed between the roots of the upper second premolar and the first molar. The cortical bone thickness was set to 1 mm. The head part of the OMI was available in 3 sizes: 1 mm, 2 mm, and 3 mm. After a 2 N lateral force was applied to the center of the head part, the stress distribution and magnitude were analyzed using FEA. Results: When the head part of the OMI was friction fitted (tapped into place) into the inserted screw part, the stress was uniformly distributed over the surface where the head part was inserted. The extent of the minimum principal stress suggested that the length of the head part was proportionate with the amount of stress to the cortical bone; the stress varied between 10.84 and 15.33 MPa. Conclusions: These results suggest that the stress level at the cortical bone around the OMI does not have a detrimental influence on physiologic bone remodeling.
본 연구는 강원도 춘천군에 위치한 임업진흥촉진지역 21,417ha를 대상으로 10개의 지형특성치를 이용, 집락분석과 주성분분석에 의하여 임지를 구분함과 동시에 판별분석에 의하여 임지구분에 영향을 미치는 최소한의 변수를 검토하여, 실질적으로 기계화 집재작업을 위한 작업기종의 선정에 정확한 지형정보를 제공하는데 목적이 있다. 그 결과는 다음과 같다. 1) 고성단지는 총면적 2,252ha로 중에서 57%가 완지형으로 분류되어 트랙터형 집재가 적합하고 43%가 급지형으로 중거리 가선집재형이 적합함을 보여 주었다. 2) 가정단지(2,306ha)와 광판단지(2,627ha)는 각각 65%와 67%가 급지형으로 분류되어 대개 중거리 가선형의 집재가 적합하고, 나머지 35%와 33%가 트랙터형 집재가 적합한 완지형으로 나타났다. 3) 지암단지(4,519ha)는 대부분의 지역이 급지형으로 분류되어 중거리 가선형이 적합하였다. 4) 군자단지(3,400ha), 수동단지(3,894ha), 신포단지(2,430ha)는 총면적중에서 각각 85%, 75%, 75%가 급지형으로 분류되어 중거리 가선집재형이 적합함을 보여 주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.