• 제목/요약/키워드: principal fitted component

검색결과 10건 처리시간 0.021초

Comprehensive studies of Grassmann manifold optimization and sequential candidate set algorithm in a principal fitted component model

  • Chaeyoung, Lee;Jae Keun, Yoo
    • Communications for Statistical Applications and Methods
    • /
    • 제29권6호
    • /
    • pp.721-733
    • /
    • 2022
  • In this paper we compare parameter estimation by Grassmann manifold optimization and sequential candidate set algorithm in a structured principal fitted component (PFC) model. The structured PFC model extends the form of the covariance matrix of a random error to relieve the limits that occur due to too simple form of the matrix. However, unlike other PFC models, structured PFC model does not have a closed form for parameter estimation in dimension reduction which signals the need of numerical computation. The numerical computation can be done through Grassmann manifold optimization and sequential candidate set algorithm. We conducted numerical studies to compare the two methods by computing the results of sequential dimension testing and trace correlation values where we can compare the performance in determining dimension and estimating the basis. We could conclude that Grassmann manifold optimization outperforms sequential candidate set algorithm in dimension determination, while sequential candidate set algorithm is better in basis estimation when conducting dimension reduction. We also applied the methods in real data which derived the same result.

Intensive comparison of semi-parametric and non-parametric dimension reduction methods in forward regression

  • Shin, Minju;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • 제29권5호
    • /
    • pp.615-627
    • /
    • 2022
  • Principal Fitted Component (PFC) is a semi-parametric sufficient dimension reduction (SDR) method, which is originally proposed in Cook (2007). According to Cook (2007), the PFC has a connection with other usual non-parametric SDR methods. The connection is limited to sliced inverse regression (Li, 1991) and ordinary least squares. Since there is no direct comparison between the two approaches in various forward regressions up to date, a practical guidance between the two approaches is necessary for usual statistical practitioners. To fill this practical necessity, in this paper, we newly derive a connection of the PFC to covariance methods (Yin and Cook, 2002), which is one of the most popular SDR methods. Also, intensive numerical studies have done closely to examine and compare the estimation performances of the semi- and non-parametric SDR methods for various forward regressions. The founding from the numerical studies are confirmed in a real data example.

주성분 분석과 다중회귀모형을 사용한 자동차 건조 공정의 히트펌프 건조기 소모 전력 분석 (Analyses of Power Consumption of the Heat Pump Dryer in the Automobile Drying Process by using the Principal Component Analysis and Multiple Regression)

  • 이창용;송근수;김진호
    • 산업경영시스템학회지
    • /
    • 제38권1호
    • /
    • pp.143-151
    • /
    • 2015
  • In this paper, we investigate how the power consumption of a heat pump dryer depends on various factors in the drying process by analyzing variables that affect the power consumption. Since there are in general many variables that affect the power consumption, for a feasible analysis, we utilize the principal component analysis to reduce the number of variables (or dimensionality) to two or three. We find that the first component is correlated positively to the entrance temperature of various devices such as compressor, expander, evaporator, and the second, negatively to condenser. We then model the power consumption as a multiple regression with two and/or three transformed variables of the selected principal components. We find that fitted value from the multiple regression explains 80~90% of the observed value of the power consumption. This results can be applied to a more elaborate control of the power consumption in the heat pump dryer.

혈소판 라만 스펙트럼의 효율적인 분석을 위한 기준선 보정 방법 (A Baseline Correction for Effective Analysis of Alzheimer’s Disease based on Raman Spectra from Platelet)

  • 박아론;백성준
    • 전자공학회논문지CI
    • /
    • 제49권1호
    • /
    • pp.16-22
    • /
    • 2012
  • 본 논문에서는 알츠하이머병이 유도된 형질전환 마우스로부터 획득한 혈소판 라만 스펙트럼의 분석을 위해 가우시안 모델을 이용한 커브 피팅으로 기준선을 추정하고 보정하는 방법을 제안하였다. 측정된 라만 스펙트럼은 의미 있는 정보와 불필요한 노이즈 성분인 기준선과 가산 노이즈를 포함하고 있다. 스펙트럼의 효율적인 분석을 위해 노이즈를 포함하고 있는 스펙트럼을 몇 개의 피크를 포함하는 영역으로 분할하고 각 로컬 영역의 스펙트럼을 가우시안 모델을 이용한 커브 피팅으로 모델링한다. 가산 노이즈는 원 스펙트럼을 이 델로 대체하는 과정에서 명백하게 제거된다. 피팅된 모델의 로컬 최저점을 linear, piecewise cubic Hermite, cubic spline 알고리즘으로 보간하고 기준선을 보정한다. 기준선을 보정한 피팅 모델은 PCA(principal component analysis) 방법을 이용하여 특징을 추출하고 SVM(support vector machine)과 MAP(maximum $a$ posteriori probability) 분류 방법으로 성능 비교 실험을 하였다. 실험 결과에 따르면 linear 보간법이 모든 주성분 수에 대한 분류율의 평균에서 우세하였고 특히 piecewise cubic Hermite 보간법은 주성분의 수가 5개인 경우에서 SVM 분류율이 약 97.3%로 가장 좋은 성능을 보였다. 또한 이전의 연구 결과와 비교를 통해 제안한 기준선 보정 방법이 혈소판 라만 스펙트럼의 분석에 효과적으로 적용될 수 있음을 확인하였다.

주성분 분석을 통한 포인트 클라우드 굽은 실린더 형태 매칭 (Matching for the Elbow Cylinder Shape in the Point Cloud Using the PCA)

  • 진영훈
    • 정보과학회 논문지
    • /
    • 제44권4호
    • /
    • pp.392-398
    • /
    • 2017
  • 포인트 클라우드를 이용한 물체의 표현은 레이저 스캐너를 통해 공간을 스캔하여 점의 집합을 추출하고, 정합(Registration)을 통해 하나의 좌표계로 통합하는 과정을 거쳐 이루어진다. 정합이 완료된 포인트 클라우드 집합은 수학적 해석을 통해 의미 있는 영역, 형태, 잡음 등으로 분류되어 쓰이게 된다. 본 논문은 3차원 포인트 클라우드 데이터에서 실린더 형태의 굽은 영역 매칭을 목표로 한다. 매칭 절차는 포인트 클라우드에서 RANdom SAmple Consensus(RANSAC)을 통한 구(sphere) 적합(fitting)으로 실린더 형태의 점 후보군을 추출하여 중심과 반지름 데이터를 얻고, 추출된 중심점 데이터에서 주성분 분석(Principal Component Analysis)을 통해 굽은 영역인지 판별한 후 캣멀롬 스플라인(Catmull-Rom spline)으로 굽은 영역 매칭을 완료한다. 제안된 방법은 제약조건 및 분할 없이 중심축 추정에 이은 직선 및 굽은 형태의 실린더 추정으로 비교적 빠른 추정결과를 도출하고, 역설계의 작업효율을 높일 수 있을 것으로 기대된다.

Spatial Variability of Soil Properties using Nested Variograms at Multiple Scales

  • Chung, Sun-Ok;Sudduth, Kenneth A.;Drummond, Scott T.;Kitchen, Newell R.
    • Journal of Biosystems Engineering
    • /
    • 제39권4호
    • /
    • pp.377-388
    • /
    • 2014
  • Purpose: Determining the spatial structure of data is important in understanding within-field variability for site-specific crop management. An understanding of the spatial structures present in the data may help illuminate interrelationships that are important in subsequent explanatory analyses, especially when site variables are correlated or are a combined response to multiple causative factors. Methods: In this study, correlation, principal component analysis, and single and nested variogram models were applied to soil electrical conductivity and chemical property data of two fields in central Missouri, USA. Results: Some variables that were highly correlated, or were strongly expressed in the same principal component, exhibited similar spatial ranges when fitted with a single variogram model. However, single variogram results were dependent on the active lag distance used, with short distances (30 m) required to fit short-range variability. Longer active lag distances only revealed long-range spatial components. Nested models generally yielded a better fit than single models for sensor-based conductivity data, where multiple scales of spatial structure were apparent. Gaussian-spherical nested models fit well to the data at both short (30 m) and long (300 m) active lag distances, generally capturing both short-range and long-range spatial components. As soil conductivity relates strongly to profile texture, we hypothesize that the short-range components may relate to the scale of erosion processes, while the long-range components are indicative of the scale of landscape morphology. Conclusion: In this study, we investigated the effect of changing active lag distance on the calculation of the range parameter. Future work investigating scale effects on other variogram parameters, including nugget and sill variances, may lead to better model selection and interpretation. Once this is achieved, separation of nested spatial components by factorial kriging may help to better define the correlations existing between spatial datasets.

The Operational Procedure on Estimating Typhoon Center Intensity using Meteorological Satellite Images in KMA

  • Park, Jeong-Hyun;Park, Jong-Seo;Kim, Baek-Min;Suh, Ae-Sook
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.278-281
    • /
    • 2006
  • Korea Meteorological Administration(KMA) has issued the tropical storm(typhoon) warning or advisories when it was developed to tropical storm from tropical depression and a typhoon is expected to influence the Korean peninsula and adjacent seas. Typhoon information includes current typhoon position and intensity. KMA has used the Dvorak Technique to analyze the center of typhoon and it's intensity by using available geostationary satellites' images such as GMS, GOES-9 and MTSAT-1R since 2001. The Dvorak technique is so subjective that the analysis results could be variable according to analysts. To reduce the subjective errors, QuikSCAT seawind data have been used with various analysis data including sea surface temperature from geostationary meteorological satellites, polar orbit satellites, and other observation data. On the other hand, there is an advantage of using the Subjective Dvorak Technique(SDT). SDT can get information about intensity and center of typhoon by using only infrared images of geostationary meteorology satellites. However, there has been a limitation to use the SDT on operational purpose because of lack of observation and information from polar orbit satellites such as SSM/I. Therefore, KMA has established Advanced Objective Dvorak Technique(AODT) system developed by UW/CIMSS(University of Wisconsin-Madison/Cooperative Institude for Meteorological Satellite Studies) to improve current typhoon analysis technique, and the performance has been tested since 2005. We have developed statistical relationships to correct AODT CI numbers according to the SDT CI numbers that have been presumed as truths of typhoons occurred in northwestern pacific ocean by using linear, nonlinear regressions, and neural network principal component analysis. In conclusion, the neural network nonlinear principal component analysis has fitted best to the SDT, and shown Root Mean Square Error(RMSE) 0.42 and coefficient of determination($R^2$) 0.91 by using MTSAT-1R satellite images of 2005. KMA has operated typhoon intensity analysis using SDT and AODT since 2006 and keep trying to correct CI numbers.

  • PDF

다목적 다변량 자료분석을 위한 변수선택 (Variable Selection for Multi-Purpose Multivariate Data Analysis)

  • 허명회;임용빈;이용구
    • 응용통계연구
    • /
    • 제21권1호
    • /
    • pp.141-149
    • /
    • 2008
  • 다변량 자료분석에서 최근의 추세는 관측개체의 수 n이 커지는 외에 변수의 수 p가 큰사례들이 많아지고 있다는 것이다. n개 개체 각각에서 획득된 p개 변수들 $X_1$, $X_2$, $\ldots$, $X_p$ 가운데는 이름이나 개념적으로는 구분이 가능하지 만 실제로 거의 중복이 되는 변수들이 있을 수 있는데, 이들 변수들이 모두 분석에 포함되면 여러 문제가 유발될 수 있다. 예컨대 주성분 분석이나 인자분석에서는 중복 변수들이 주축(主軸, principal axis) 결정에, 관측개체 군집 화에서는 개체간 거리 산출에 왜곡된 영향을 줄 수 있다. 또한 목적변수가 지정된 지도학습(supervised learning)에서 설명변수들의 중복성은 추정모형의 안정성을 해치는 결과를 초래한다. 실제 자료 분석에서는 한 자료 세트가 여러 기법으로 탐색되고 다수의 모형이 추출되므로 변수세트를 최대한 절약적(parsimonious)으로 구성할 필요가 있다. 본 연구의 목적은 $X_1$, $X_2$, $\ldots$, $X_p$ 중에서 필요한 변수들은 선적하고 불필요한 변수들은 제거함으로써 주어진 변수세트를 보다 적은 크기의 변수세트로 대치하는 방법을 제시하는 데 있다. 제안 방법을 몇 개의 수치적 사례에 적용해 봄으로써 선적 변수와 제거변수간 관계의 시각화, 회귀모형에서의 유용성, 범주형 자료분석에서의 활용 등에 대해 논의 하고자 한다.

다양한 길이의 two-component 미니 임플란트의 응력분산에 대한 3차원적 유한요소분석 (Three-dimensional finite element analysis for determining the stress distribution after loading the bone surface with two-component mini-implants of varying length)

  • 최봄;이동옥;모성서;김성훈;박기호;정규림;;한성호
    • 대한치과교정학회지
    • /
    • 제41권6호
    • /
    • pp.423-430
    • /
    • 2011
  • Objective: To evaluate the extent and aspect of stress to the cortical bone after application of a lateral force to a two-component orthodontic mini-implant (OMI, mini-implant) by using three-dimensional finite element analysis (FEA). Methods: The 3D-finite element models consisted of the maxilla, maxillary first molars, second premolars, and OMIs. The screw part of the OMI had a diameter of 1.8 mm and length of 8.5 mm and was placed between the roots of the upper second premolar and the first molar. The cortical bone thickness was set to 1 mm. The head part of the OMI was available in 3 sizes: 1 mm, 2 mm, and 3 mm. After a 2 N lateral force was applied to the center of the head part, the stress distribution and magnitude were analyzed using FEA. Results: When the head part of the OMI was friction fitted (tapped into place) into the inserted screw part, the stress was uniformly distributed over the surface where the head part was inserted. The extent of the minimum principal stress suggested that the length of the head part was proportionate with the amount of stress to the cortical bone; the stress varied between 10.84 and 15.33 MPa. Conclusions: These results suggest that the stress level at the cortical bone around the OMI does not have a detrimental influence on physiologic bone remodeling.

기계화(機械化) 집재작업(集材作業)을 위한 노망(路網)의 정비 - 임지(林地)의 분류(分類) - (Studies on design of forest road nets for mechanized yarding operations - Classification of forest site -)

  • 차두송;조구현;지병윤
    • Journal of Forest and Environmental Science
    • /
    • 제9권1호
    • /
    • pp.57-66
    • /
    • 1993
  • 본 연구는 강원도 춘천군에 위치한 임업진흥촉진지역 21,417ha를 대상으로 10개의 지형특성치를 이용, 집락분석과 주성분분석에 의하여 임지를 구분함과 동시에 판별분석에 의하여 임지구분에 영향을 미치는 최소한의 변수를 검토하여, 실질적으로 기계화 집재작업을 위한 작업기종의 선정에 정확한 지형정보를 제공하는데 목적이 있다. 그 결과는 다음과 같다. 1) 고성단지는 총면적 2,252ha로 중에서 57%가 완지형으로 분류되어 트랙터형 집재가 적합하고 43%가 급지형으로 중거리 가선집재형이 적합함을 보여 주었다. 2) 가정단지(2,306ha)와 광판단지(2,627ha)는 각각 65%와 67%가 급지형으로 분류되어 대개 중거리 가선형의 집재가 적합하고, 나머지 35%와 33%가 트랙터형 집재가 적합한 완지형으로 나타났다. 3) 지암단지(4,519ha)는 대부분의 지역이 급지형으로 분류되어 중거리 가선형이 적합하였다. 4) 군자단지(3,400ha), 수동단지(3,894ha), 신포단지(2,430ha)는 총면적중에서 각각 85%, 75%, 75%가 급지형으로 분류되어 중거리 가선집재형이 적합함을 보여 주었다.

  • PDF