• 제목/요약/키워드: principal component regression analysis

검색결과 222건 처리시간 0.02초

라소를 이용한 간편한 주성분분석 (Simple principal component analysis using Lasso)

  • 박철용
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권3호
    • /
    • pp.533-541
    • /
    • 2013
  • 이 연구에서는 라소를 이용한 간편한 주성분분석을 제안한다. 이 방법은 다음의 두 단계로 구성되어 있다. 먼저 주성분분석에 의해 주성분을 구한다. 다음으로 각 주성분을 반응변수로 하고 원자료를 설명변수로 하는 라소 회귀모형에 의한 회귀계수 추정량을 구한다. 이 회귀계수 추정량에 기반한 새로운 주성분을 사용한다. 이 방법은 라소 회귀분석의 성질에 의해 회귀계수 추정량이 보다 쉽게 0이 될 수 있기 때문에 해석이 쉬운 장점이 있다. 왜냐하면 주성분을 반응변수로 하고 원자료를 설명변수로 하는 회귀모형의 회귀계수가 고유벡터가 되기 때문이다. 라소 회귀모형을 위한 R 패키지를 이용하여 모의생성된 자료와 실제 자료에 이 방법을 적용하여 유용성을 보였다.

Sensitivity Analysis in Principal Component Regression with Quadratic Approximation

  • Shin, Jae-Kyoung;Chang, Duk-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권3호
    • /
    • pp.623-630
    • /
    • 2003
  • Recently, Tanaka(1988) derived two influence functions related to an eigenvalue problem $(A-\lambda_sI)\upsilon_s=0$ of real symmetric matrix A and used them for sensitivity analysis in principal component analysis. In this paper, we deal with the perturbation expansions up to quadratic terms of the same functions and discuss the application to sensitivity analysis in principal component regression analysis(PCRA). Numerical example is given to show how the approximation improves with the quadratic term.

  • PDF

주성분회귀분석을 이용한 한국프로야구 순위 (Predicting Korea Pro-Baseball Rankings by Principal Component Regression Analysis)

  • 배재영;이진목;이제영
    • Communications for Statistical Applications and Methods
    • /
    • 제19권3호
    • /
    • pp.367-379
    • /
    • 2012
  • 야구경기에서 순위를 예측하는 것은 야구팬들에게 관심의 대상이 된다. 이러한 순위를 예측하기 위해서 2011년 한국프로야구 기록 자료를 바탕으로 산술평균방법, 가중평균방법, 주성분분석방법, 주성분회귀분석 방법을 제시한다. 표준화를 통한 산술평균, 상관계수를 이용한 가중평균과 주성분 분석을 이용해서 순위를 예측하고, 최종모형으로 주성분회귀분석 모형이 선택되었다. 주성분 분석으로 축약된 변수를 이용해서 회귀분석을 실시하여, 투수부분, 타자부분, 투수와 타자부분의 순위예측 모형을 제안한다. 예측된 회귀모형을 통해서 2012년도 순위 예측이 가능하다.

공간자료 주성분분석 (Principal component regression for spatial data)

  • 임예지
    • 응용통계연구
    • /
    • 제30권3호
    • /
    • pp.311-321
    • /
    • 2017
  • 주성분 분석은 통계학 뿐만 아니라 기상학에서 널리 사용되는 방법론이며, 고차원 자료에 대한 차원축소 역할 뿐만아니라 기상자료에서의 의미있는 패턴을 찾아내기 위해 사용되는 방법론이다. 또한 주성분분석에 기반을 둔 주성분 회귀분석 방법론은 기후예측이 가능하므로 미래 시점의 기후값 예측에 사용될 수 있다. 본 논문에서는 Wang과 Huang (2016) 논문에서 제안한 제한된 공간 주성분 분석을 기반으로 한 주성분 회귀분석 방법론을 개발하였다. 이를 시뮬레이션을 통하여 확인하였고, 실제 자료인 동아시아 지역 온도예측에 적용하여 기존의 주성분 회귀분석 예측 값에 비해 예측력이 높아짐을 확인하였다.

주성분회귀와 고유값회귀에 대한 감도분석의 성질에 대한 연구 (A study on the properties of sensitivity analysis in principal component regression and latent root regression)

  • 신재경;장덕준
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권2호
    • /
    • pp.321-328
    • /
    • 2009
  • 회귀분석에서 설명변수들 사이에 상관이 높으면 최소제곱추정법에서 구한 회귀계수들의 정도가 떨어진다. 다중공선성이라 불리는 이 현상은 실제 자료분석에서 심각한 문제를 야기시킨다. 이 다중공선성의 문제를 극복하기 위한 여러 가지 방법이 제안되었다. 능형회귀, 축소추정량 그리고 주성분분석에 기초한 주성분회귀와 고유값회귀등이 있다. 지난 수십 년간 많은 통계학자들은 일반적인 중 회귀에서 감도분석에 관해 연구하였으며, 주성분회귀, 고유값회귀와 로지스틱 주성분회귀에 대해서도 같은 주제로 연구하였다. 이 모든 방법에서 주성분분석은 중요한 역할을 하였다. 또한, 많은 통계학자들이 주성분분석과 관련된 다변량 방법에서 감도분석에 대해 연구를 하였다. 본 연구논문에서는 주성분회귀와 고유값회귀를 소개하고, 또한 주성분회귀와 고유값회귀에서 감도분석의 방법을 소개하고, 마지막으로 이들두방법에 대한 감도분석의 성질에 대해 논의하였다.

  • PDF

On Sensitivity Analysis in Principal Component Regression

  • Kim, Soon-Kwi;Park, Sung H.
    • Journal of the Korean Statistical Society
    • /
    • 제20권2호
    • /
    • pp.177-190
    • /
    • 1991
  • In this paper, we discuss and review various measures which have been presented for studying outliers. high-leverage points, and influential observations when principal component regression is adopted. We suggest several diagnostics measures when principal component regression is used. A numerical example is illustrated. Some individual data points may be flagged as outliers, high-leverage point, or influential points.

  • PDF

Classification via principal differential analysis

  • Jang, Eunseong;Lim, Yaeji
    • Communications for Statistical Applications and Methods
    • /
    • 제28권2호
    • /
    • pp.135-150
    • /
    • 2021
  • We propose principal differential analysis based classification methods. Computations of squared multiple correlation function (RSQ) and principal differential analysis (PDA) scores are reviewed; in addition, we combine principal differential analysis results with the logistic regression for binary classification. In the numerical study, we compare the principal differential analysis based classification methods with functional principal component analysis based classification. Various scenarios are considered in a simulation study, and principal differential analysis based classification methods classify the functional data well. Gene expression data is considered for real data analysis. We observe that the PDA score based method also performs well.

주성분 분석과 다중회귀모형을 사용한 자동차 건조 공정의 히트펌프 건조기 소모 전력 분석 (Analyses of Power Consumption of the Heat Pump Dryer in the Automobile Drying Process by using the Principal Component Analysis and Multiple Regression)

  • 이창용;송근수;김진호
    • 산업경영시스템학회지
    • /
    • 제38권1호
    • /
    • pp.143-151
    • /
    • 2015
  • In this paper, we investigate how the power consumption of a heat pump dryer depends on various factors in the drying process by analyzing variables that affect the power consumption. Since there are in general many variables that affect the power consumption, for a feasible analysis, we utilize the principal component analysis to reduce the number of variables (or dimensionality) to two or three. We find that the first component is correlated positively to the entrance temperature of various devices such as compressor, expander, evaporator, and the second, negatively to condenser. We then model the power consumption as a multiple regression with two and/or three transformed variables of the selected principal components. We find that fitted value from the multiple regression explains 80~90% of the observed value of the power consumption. This results can be applied to a more elaborate control of the power consumption in the heat pump dryer.

식생이 무성한 지역에서의 Principal Component Analysis 에 의한 Landsat TM 자료의 광역지질도 작성 (Regional Geological Mapping by Principal Component Analysis of the Landsat TM Data in a Heavily Vegetated Area)

  • 朴鍾南;徐延熙
    • 대한원격탐사학회지
    • /
    • 제4권1호
    • /
    • pp.49-60
    • /
    • 1988
  • Principal Component Analysis (PCA) was applied for regional geological mapping to a multivariate data set of the Landsat TM data in the heavily vegetated and topographically rugged Chungju area. The multivariate data set selection was made by statistical analysis based on the magnitude of regression of squares in multiple regression, and it includes R1/2/R3/4, R2/3, R5/7/R4/3, R1/2, R3/4. R4/3. AND R4/5. As a result of application of PCA, some of later principal components (in this study PC 3 and PC 5) are geologically more significant than earlier major components, PC 1 and PC 2 herein. The earlier two major components which comprise 96% of the total information of the data set, mainly represent reflectance of vegetation and topographic effects, while though the rest represent 3% of the total information which statistically indicates the information unstable, geological significance of PC3 and PC5 in the study implies that application of the technique in more favorable areas should lead to much better results.

근적외 스펙트럼을 이용한 정량분석용 최적 주성분회귀모델을 얻기 위한 알고리듬 (Algorithm for Finding the Best Principal Component Regression Models for Quantitative Analysis using NIR Spectra)

  • 조정환
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권6호
    • /
    • pp.377-395
    • /
    • 2007
  • Near infrared(NIR) spectral data have been used for the noninvasive analysis of various biological samples. Nonetheless, absorption bands of NIR region are overlapped extensively. It is very difficult to select the proper wavelengths of spectral data, which give the best PCR(principal component regression) models for the analysis of constituents of biological samples. The NIR data were used after polynomial smoothing and differentiation of 1st order, using Savitzky-Golay filters. To find the best PCR models, all-possible combinations of available principal components from the given NIR spectral data were derived by in-house programs written in MATLAB codes. All of the extensively generated PCR models were compared in terms of SEC(standard error of calibration), $R^2$, SEP(standard error of prediction) and SECP(standard error of calibration and prediction) to find the best combination of principal components of the initial PCR models. The initial PCR models were found by SEC or Malinowski's indicator function and a priori selection of spectral points were examined in terms of correlation coefficients between NIR data at each wavelength and corresponding concentrations. For the test of the developed program, aqueous solutions of BSA(bovine serum albumin) and glucose were prepared and analyzed. As a result, the best PCR models were found using a priori selection of spectral points and the final model selection by SEP or SECP.