• Title/Summary/Keyword: principal

Search Result 7,219, Processing Time 0.037 seconds

Resistant h-Plot for a Sample Variance-Covariance Matrix

  • Park, Yong-Seok
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.407-417
    • /
    • 1995
  • The h-plot is a graphical technique for displaying the structure of one population's variance-covariance matrix. This follows the mathematical algorithem of the principle component biplot based on the singular value decomposition. But it is known that the singular value decomposition is not resistant, i.e., it is very sensitive to small changes in the input data. In this article, since the mathematical algorithm of the h-plot is equivalent to that of principal component biplot of Choi and Huh (1994), we derive the resistant h-plot.

  • PDF

SVM-Guided Biplot of Observations and Variables

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.491-498
    • /
    • 2013
  • We consider support vector machines(SVM) to predict Y with p numerical variables $X_1$, ${\ldots}$, $X_p$. This paper aims to build a biplot of p explanatory variables, in which the first dimension indicates the direction of SVM classification and/or regression fits. We use the geometric scheme of kernel principal component analysis adapted to map n observations on the two-dimensional projection plane of which one axis is determined by a SVM model a priori.

Virtual Coverage: A New Approach to Coverage-Based Software Reliability Engineering

  • Park, Joong-Yang;Lee, Gyemin
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.467-474
    • /
    • 2013
  • It is common to measure multiple coverage metrics during software testing. Software reliability growth models and coverage growth functions have been applied to each coverage metric to evaluate software reliability; however, analysis results for the individual coverage metrics may conflict with each other. This paper proposes the virtual coverage metric of a normalized first principal component in order to avoid conflicting cases. The use of the virtual coverage metric causes a negligible loss of information.

Classification of Rural village of Eum-Seong Gun by Amenity investigation base on village (마을단위 어메니티 조사를 통한 음성군 지역의 농촌마을 유형화)

  • Kim, Ji-Hyun;Yoon, Seong-Soo;Rhee, Shin-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.461-466
    • /
    • 2005
  • The purpose of this study is to classify rural villages through the amenity investigation by a village unit. PCA(Principal component analysis) is used for the classification of rural villages. The principal components of rural villages are deduced scale, population, infrastructure, traffic, education welfare and sightseeing by PCA.

  • PDF

Real-time Face Detection based on PCA and LDA (PCA와 LDA를 이용한 실시간 얼굴 검출)

  • 홍은혜;고병철;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.538-540
    • /
    • 2002
  • 본 논문에서는 실시간 카메라 입력 영상에 적합한 얼굴 검출을 위해 다양한 외부적 환경에 덜 민감한 새로운 알고리즘을 제안한다. 빛이나 조명의 영향에 의한 오류를 방지하기 위해 전처리 과정을 포함시키고 형판 정합방법의 단점을 개선하기 위해 얼굴 인식에서 주로 쓰이는 방법인 주성분 분석(PCA :Principal Component Analyses) 변환을 적용하고. 생성된 주성분(Principal Component)을 선형 판별 분석(LDA: Linear Discriminant Analysis)의 입력으로 사용하는 방법을 통해 얼굴을 검출하도록 하였다. 실험을 위해 실제 환경과 같은 6개 카테고리의 동영상을 중심으로 실험한 결과, 본 논문에서 제안하는 방법이 기존의 PCA만을 이용한 방법보다 좋은 성능을 보여줌을 알 수 있었다.

  • PDF

A Multi-Resolution Distance Measure Using Grey Block Distance Algorithms for Principal Component Analysis (주성분분석에서의 제안된 GBD 알고리즘을 이용한 다중해상도 거리 측정)

  • Hong, Jun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2671-2673
    • /
    • 2002
  • 본 논문에서는 주성분분석(principal component analysis; 이하 PCA)기법을 이용, 이차원 영상을 분류하여 다중해상도에서 기존의 그레이 블록 거리(grey block distance; GBD, 이하 GBD)알고리즘과 비교하여 이차원 영상간의 상대적 식별을 더 용이하게 하기 위한 새로운 GBD 알고리즘 방법을 제안한다. 이 제시된 방법은 다중해상도에서 기존의 GBD 알고리즘과 비교해서 영상이 급격히 변화하는 부분의 정보를 잃지 않게 개선할 수 있었다. 모의 실험 결과로부터 기존의 GBD 알고리즘에 비하여 상대적 식별이 더 용이함을 확인하였다.

  • PDF

A Comparative Study on Isomap-based Damage Localization (아이소맵을 이용한 결함 탐지 비교 연구)

  • Koh, Bong-Hwan;Jeong, Min-Joong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.278-281
    • /
    • 2011
  • The global coordinates generated from Isomap algorithm provide a simple way to analyze and manipulate high dimensional observations in terms of their intrinsic nonlinear degrees of freedom. Thus, Isomap can find globally meaningful coordinates and nonlinear structure of complex data sets, while neither principal component analysis (PCA) nor multidimensional scaling (MDS) are successful in many cases. It is demonstrated that the adapted Isomap algorithm successfully enhances the quality of pattern classification for damage identification in various numerical examples.

  • PDF

Optimum Preliminary Ship Design Technique by Using Sophisticated Sequential Linear Approximation Method -Development and Application of User Oriented Design Optimization Language- (고성능 순차적 선형화 방법을 이용한 선박 최적 초기설계 기법 -최적화 설계 전용 언어의 개발 및 응용-)

  • K.Y.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.3
    • /
    • pp.35-45
    • /
    • 1988
  • This paper presents a sophisticated Sequential Linear Approximation Method(SLAM) to solve nonlinear optimization problem and the performance of this method is compared with those of the Penalty Function Method(SUMT), Tangent Search Method(TSM) and Flexible Tolerance Method(FTM). To improve the convenience and flexibility in using the proposed SLAM, an user oriented design optimization language is developed and the application examples are shown for the optimization of propeller principal dimensions and the optimization of bulk carrier principal particulars.

  • PDF

Evaluation of Water Quality Using Multivariate Statistic Analysis with Optimal Scaling

  • Kim, Sang-Soo;Jin, Hyun-Guk;Park, Jong-Soo;Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.349-357
    • /
    • 2005
  • Principal component analysis(PCA) was carried out to evaluate the water quality with the monitering data collected from 1997 to 2003 along the coastal area of Ulsan, Korea. To enhance evaluation and to complement descriptive power of traditional PCA, optimal scaling was applied to transform the original data into optimally scaled data. Cluster analysis was also applied to classify the monitering stations according to their characteristics of water quality.

  • PDF

A Study on the Several Robust Regression Estimators

  • Kim, Jee-Yun;Roh, Kyung-Mi;Hwang, Jin-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.307-316
    • /
    • 2004
  • Principal Component Regression(PCR) and Partial Least Squares Regression(PLSR) are the two most popular regression techniques in chemometrics. In the field of chemometrics usually the number of regressor variables greatly exceeds the number of observation. So we have to reduce the number of regressors to avoid the identifiability problem. In this paper we compare PCR and PLSR techniques combined with various robust regression methods including regression depth estimation. We compare the efficiency, goodness-of-fit and robustness of each estimators under several contamination schemes.

  • PDF