• Title/Summary/Keyword: prime flow

Search Result 91, Processing Time 0.02 seconds

Capillary Flow in Different Cells of Ginkgo Biloba, Diospyros Kaki and Ailanthus Altissima (은행나무, 감나무, 가중나무 세포내강의 액체이동)

  • Chun, Su Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.2
    • /
    • pp.179-185
    • /
    • 2015
  • A study was carried out to observe the 1% aqueous safranine solution flow speed in longitudinal and radial directions of softwood G. biloba, ring-porous wood A. altissima, and diffuse- porouswood D. kaki. In radial direction, ray cells and in longitudinal direction tracheids, vessel and wood fiber were considered for the measurement of liquid penetration speed at less than 12% moisture contents (MC). The length, lumen diameter, pit diameter, end wall pit diameter and the numbers of end wall pits determined for the flow rate. The liquid flow in the those cells was captured via video and the capillary flow rate in the ones were measured. Vessel in hardwood species and tracheids in softwood was found to facilitate prime role in longitudinal penetration. Radial flow speed was found highest in ray parenchyma of G. biloba. Anatomical features like the length and diameter, end-wall pit numbers of ray parenchyma were found also responsible fluid flow differences. On the other hand, vessel and fiber structure affected the longitudinal flow of liquids. Therefore, the average liquid penetration depth in longitudinal tracheids of G. biloba was found the highest among all cells considered in D. kaki and A. altissima.

A Theoretical Model of Critical Heat Flux in Flow Boiling at Low Qualities

  • Kim, Ho-Young;Kwon, Hyuk-Sung;Hwang, Dae-Hyun;Kim, Yongchan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.921-930
    • /
    • 2001
  • A new theoretical critical heat flux (CHF) model was developed for the forced convective flow boiling at high pressure, high mass velocity, and low quality. The present model for an intermittent vapor blanket was basically derived from the sublayer dryout theory without including any empirical constant. The vapor blanket velocity was estimated by an axial force balance, and the thickness of vapor blanket was determined by a radial force balance for the Marangoni force and lift force. Based on the comparison of the predicted CHF with the experimental data taken from previous studies, the present CHF model showed satisfactory results with reasonable accuracy.

  • PDF

Development of Numerical Tool for the DNS/LES of Turbulent Flow for Frictional Drag Reduction (마찰저항감소를 위한 난류유동의 DNS/LES 해석기술의 개발)

  • ;;Osama A. El-Samni
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • The friction drag reduction of a ship is of prime importance for the design and production of high-valued/high-tech ship. Thus, this study carried out the development of reliable numerical tools to identify the friction drag reduction mechanism for turbulent boundary layer on the ship surface and to deduce the optimum reduction technique by numerical experiment. The developed LES and DNS numerical tools were applied to simulate the turbulent channel flow These results were very well matched with previous results not only qualitatively but also quantitatively. The parallelization using MPI (Message Passing Interface) technique implemented in the developed code to speed up the simulation and to obtain the accurate results from the fine grid system was testified its computational efficiency.

A Study on Enhancement of Thermoelectric Cooling System Performance by Piezoelectric Actuator (압전 액츄에이터를 이용한 열전냉각 시스템 성능 향상에 관한 연구)

  • Yang, Ho-Dong;Yoon, Hee-Sung;Oh, Yool-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.13-19
    • /
    • 2009
  • The thermoelectric cooling system consisted of the thermoelectric module, a heat sink and a cooling fan, respectively. Also, the piezoelectric actuator was applied to improve the performance of thermoelectric cooling system and investigate the heat transfer phenomenon. The temperature distribution of test section was measured to investigate cooling characteristics of thermoelectric cooling system. The flow phenomenon of test section was visualized using visualization device. When the piezoelectric actuator was applied to the heat transfer process of thermoelectric cooling system, acoustic streaming was occurred in test section. The acoustic streaming was occurred forced convection flow, and was regularly formed the temperature distribution in test section. The results clearly show that the acoustic streaming is one of the prime effects to enhance the convection heat transfer and can enhance the performance of thermoelectric cooling system.

Calculating Error Reduction with Graph Restructuring in Loop Folding

  • Nishitani, Yoshi;Harashima, Katsumi;Kutsuwa, Toshirou
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.657-660
    • /
    • 2000
  • This paper proposes a Data-Flow-Graph (DFG) restructuring to reduce calculating errors in loop folding scheduling. The prime cause of calculating error is rounding errors due to the restriction of the operation digit of functional units. This rounding error is increased more by using multipliers than adders, so reducing the number of multiplications and putting off them as much as possible reduce rounding errors. The proposed approach reduces the number of multiplications by restructuring DFG in loop folding.

  • PDF

Netflix, Amazon Prime, and YouTube: Comparative Study of Streaming Infrastructure and Strategy

  • Suman, Pandey;Yang-Sae, Moon;Mi-Jung, Choi
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.729-740
    • /
    • 2022
  • Netflix, Amazon Prime, and YouTube are the most popular and fastest-growing streaming services globally. It is a matter of great interest for the streaming service providers to preview their service infrastructure and streaming strategy in order to provide new streaming services. Hence, the first part of the paper presents a detailed survey of the Content Distribution Network (CDN) and cloud infrastructure of these service providers. To understand the streaming strategy of these service providers, the second part of the paper deduces a common quality-of-service (QoS) model based on rebuffering time, bitrate, progressive download ratio, and standard deviation of the On-Off cycle. This model is then used to analyze and compare the streaming behaviors of these services. This study concluded that the streaming behaviors of all these services are similar as they all use Dynamic Adaptive Streaming over HTTP (DASH) on top of TCP. However, the amount of data that they download in the buffering state and steady-state vary, resulting in different progressive download ratios, rebuffering levels, and bitrates. The characteristics of their On-Off cycle are also different resulting in different QoS. Hence a thorough adaptive bit rate (ABR) analysis is presented in this paper. The streaming behaviors of these services are tested on different access network bandwidths, ranging from 75 kbps to 30 Mbps. The survey results indicate that Netflix QoS and streaming behavior are significantly consistent followed by Amazon Prime and YouTube. Our approach can be used to compare and contrast the streaming services' strategies and finetune their ABR and flow control mechanisms.

A Study on the Transient Phenomenon Analysis of Ship Generator Synchronization (선박용 발전기 동기화시의 과도현상 해석에 관한 연구)

  • Oh, Sae-Gin;Kim, Jong-Su;Kim, Sung-Hwan;Lee, Sung-Gun;Jo, Sung-Kab
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.998-1004
    • /
    • 2007
  • Connecting a synchronous generator to a power system is a dynamic process, requiring the coordinated operation of many components and systems. The goal is to connect the oncoming generator to the system smoothly i.e without causing any significant bumps, surges, or power swings, by closing the ACB when the oncoming generator matches the power system in voltage magnitude, phase angle, and frequency. If oncoming generator voltage is not matched to the power system voltage, reactive power will flow either into or out of the system at the instant of ACB closure. If this voltage difference is too great, the reactive power flow may result in high transient stresses that could damage the windings of the generator. Also, if oncoming generator frequency is not matched to the power system frequency, transient power will flow between generator and power system. If the frequency difference is too great, the transient power flow is reflected into the prime mover shaft, and this may result in excessive shaft or coupling stress. This paper tries to prove the necessity of correct synchronization for ship generators through a transient phenomenon analysis.

Effect of $CO_2$ Content on the Growth and Corrosion Characteristics of the Compound Layers in Gaseous Nitrocarburized Carbon Steels (가스 질화침탄처리한 탄소강의 화합물층 성장 및 부식특성에 미치는 $CO_2$함량의 영향)

  • Kim, Y.H.;Kim, S.D.;Yoon, H.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.5
    • /
    • pp.219-227
    • /
    • 2002
  • This study has been performed to investigate the effect of $CO_2$ content on the growth characteristics of the compound layer, porous layer and corrosion characteristics of carbon steels after gaseous nitrocarburizing in $70%-NH_3-CO_2-N_2$ at $580^{\circ}C$ for 2.5 hrs. The results obtained from the experiment were the thickness of the compound and porous layers increased with increasing $CO_2$ contents. At the same fixed gas composition the thickness of the compound and porous layer increased with increasing carbon content of the specimens. X-ray diffraction analysis showed that compound layer was mainly consisted of ${\varepsilon}-Fe_{2-3}(N,C)$ and ${\gamma}^{\prime}-Fe_4N$ as the increased with $CO_2$ contents in atmosphere, compound layer was chiefly consisted of ${\varepsilon}-Fe_{2-3}(N,C)$ phase. With increasing $CO_2$ content and total flow rate in gaseous nitrocarburizing, the amount of ${\varepsilon}-Fe_{2-3}(N,C)$ phase in the compound layer was increased. The current density of passivity decreased with increasing $CO_2$ content due to the development of porous layer at the out most surface of ${\varepsilon}-Fe_{2-3}(N,C)$.

Characteristics of Directional Orientation in Location and Site Design of Hangae Village, Sungjoo County (성주(星州) 한개마을의 입지(立地)와 배치계획(配置計劃)에 나타난 방위적(防衛的) 특성에 관한 연구)

  • Lee, Hyun-Byung;Kim, Sung-Woo
    • Journal of architectural history
    • /
    • v.13 no.2 s.38
    • /
    • pp.71-81
    • /
    • 2004
  • This paper discusses of the problem of direction and orientation of site design of a traditional Korean village. The research focus on how the directional orientation of each houses adapt the direction of the flow of surrounding mountains. The direction of mountains worked as a prime rule which most of the houses( 76.6%) observed the same direction as their own orientation. While the central part of the village followed the direction of mountains more strictly, however the houses on the periphery area tend to be more free from the direction of mountains. This houses of the periphery respect either the direction of the mountain flow right behind the house or faces toward the south.

  • PDF

Passivity-based Controller Design for Induction Motor Driven by Doubly-fed Induction Generator (이중권선 유도발전기로 구동되는 유도전동기의 수동성기반제어기 설계)

  • Lee S.C.;Kim J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.639-643
    • /
    • 2003
  • We are interested in this paper on the control of an electromechanical system consisting of a doubly-fed induction generator(DFIG), driven by a prime mover that can supply or extract mechanical power, e.g., a flywheel inertia, and an induction motor(IM). The stator of the Induction machine is connected to the stator of the generator whose rotor voltage is regulated by a bidirectional converter. The main interest of this configuration is that it permits a bidirectional power flow between the motor, which may operate in regenerative mode, and the generator We propose a passivity-based controller to regulate the motor mechanical speed. Since this kind of controllers achieve stabilization via energy balancing, regulation of the power flow in the system is naturally incorporated. Simulation results are presented to illustrate the main points of our paper.

  • PDF