• Title/Summary/Keyword: prime $\Gamma$-near-ring

Search Result 4, Processing Time 0.018 seconds

COMMUTATIVITY OF PRIME GAMMA NEAR RINGS WITH GENERALIZED DERIVATIONS

  • MARKOS, ADNEW;MIYAN, PHOOL;ALEMAYEHU, GETINET
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.915-923
    • /
    • 2022
  • The purpose of the present paper is to obtain commutativity of prime Γ-near-ring N with generalized derivations F and G with associated derivations d and h respectively satisfying one of the following conditions:(i) G([x, y]α = ±f(y)α(xoy)βγg(y), (ii) F(x)βG(y) = G(y)βF(x), for all x, y ∈ N, β ∈ Γ (iii) F(u)βG(v) = G(v)βF(u), for all u ∈ U, v ∈ V, β ∈ Γ,(iv) if 0 ≠ F(a) ∈ Z(N) for some a ∈ V such that F(x)αG(y) = G(y)αF(x) for all x ∈ V and y ∈ U, α ∈ Γ.

A GENERALIZED IDEAL BASED-ZERO DIVISOR GRAPHS OF NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.161-169
    • /
    • 2009
  • In this paper, we introduce the generalized ideal-based zero-divisor graph structure of near-ring N, denoted by $\widehat{{\Gamma}_I(N)}$. It is shown that if I is a completely reflexive ideal of N, then every two vertices in $\widehat{{\Gamma}_I(N)}$ are connected by a path of length at most 3, and if $\widehat{{\Gamma}_I(N)}$ contains a cycle, then the core K of $\widehat{{\Gamma}_I(N)}$ is a union of triangles and rectangles. We have shown that if $\widehat{{\Gamma}_I(N)}$ is a bipartite graph for a completely semiprime ideal I of N, then N has two prime ideals whose intersection is I.