• Title/Summary/Keyword: primary user traffic

Search Result 33, Processing Time 0.02 seconds

Block-Time of Arrival/Leaving Estimation to Enhance Local Spectrum Sensing under the Practical Traffic of Primary User

  • Tran, Truc Thanh;Kong, Hyung Yun
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.514-526
    • /
    • 2013
  • With a long sensing period, the inter-frame spectrum sensing in IEEE 802.22 standard is vulnerable to the effect of the traffic of the primary user (PU). In this article, we address the two degrading factors that affect the inter-frame sensing performance with respect to the random arrival/leaving of the PU traffic. They are the noise-only samples under the random arrival traffic, and the PU-signal-contained samples under the random leaving traffic. We propose the model in which the intra-frame sensing cooperates with the inter-frame one, and the inter-frame sensing uses the time-of-arrival (ToA), and time-of-leave (ToL) detectors to reduce the two degrading factors in the inter-frame sensing time. These ToA and ToL detectors are used to search for the sample which contains either the ToA or ToL of the PU traffic, respectively, which allows the partial cancelation of the unnecessary samples. At the final stage, the remaining samples are input into a primary user detector, which is based on the energy detection scheme, to determine the status of PU traffic in the inter-frame sensing time. The analysis and the simulation results show that the proposed scheme enhances the spectrum-sensing performance compared to the conventional counter-part.

Traffic Pattern-based Channel Selection for CR Networks (CR네트워크에서 트래픽 패턴 기반 채널 선택 기법)

  • Park, Hyung-Kun;Yu, Yun-Seop;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.597-598
    • /
    • 2011
  • In this paper, the spectrum hole prediction scheme was proposed for the cognitive radio networks using the primary user's traffic pattern. Using the channel prediction, the collision probability with primary users can be reduced and the system throuthput can be improved. Simulation result shows that the proposed method can enhance the throughput and reduce the interference to the primary user below the desired threshold.

  • PDF

Cognitive Radio Based Spectrum Sharing: Evaluating Channel Availability via Traffic Pattern Prediction

  • Li, Xiukui;Zekavat, Seyed A. (Reza)
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.104-114
    • /
    • 2009
  • In this paper, a technique is proposed that enables secondary users to evaluate channel availability in cognitive radio networks. Here, secondary users estimate the utilization of channels via predicting the traffic pattern of primary user, and select a proper channel for radio transmission. The proposed technique reduces the channel switching rate of secondary users (the rate of switching from one channel to another) and the interference on primary users, while maintaining a reasonable call blocking rate of secondary users.

Performance Evaluation of the VoIP Services of the Cognitive Radio System, Based on DTMC

  • Habiba, Ummy;Islam, Md. Imdadul;Amin, M.R.
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.119-131
    • /
    • 2014
  • In recent literature on traffic scheduling, the combination of the two-dimensional discrete-time Markov chain (DTMC) and the Markov modulated Poisson process (MMPP) is used to analyze the capacity of VoIP traffic in the cognitive radio system. The performance of the cognitive radio system solely depends on the accuracy of spectrum sensing techniques, the minimization of false alarms, and the scheduling of traffic channels. In this paper, we only emphasize the scheduling of traffic channels (i.e., traffic handling techniques for the primary user [PU] and the secondary user [SU]). We consider the following three different traffic models: the cross-layer analytical model, M/G/1(m) traffic, and the IEEE 802.16e/m scheduling approach to evaluate the performance of the VoIP services of the cognitive radio system from the context of blocking probability and throughput.

An Opportunistic Channel Access Scheme for Interweave Cognitive Radio Systems

  • Senthuran, Sivasothy;Anpalagan, Alagan;Kong, Hyung Yun;Karmokar, Ashok;Das, Olivia
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.56-66
    • /
    • 2014
  • We propose a novel opportunistic access scheme for cognitive radios in an interweave cognitive system, that considers the channel gain as well as the predicted idle channel probability (primary user occupancy: Busy/idle). In contrast to previous work where a cognitive user vacates a channel only when that channel becomes busy, the proposed scheme requires the cognitive user to switch to the channel with the next highest idle probability if the current channel's gain is below a certain threshold. We derive the threshold values that maximize the long term throughput for various primary user transition probabilities and cognitive user's relative movement.

Channel Selection Scheme using Statistical Properties in the Cognitive Radio Networks (인지무선 네트워크에서 통계적 특성을 이용한 채널선택기법)

  • Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1767-1769
    • /
    • 2011
  • In a CR (cognitive radio) network, channel selection is one of the important issues for the efficient channel utilization. When the CR user exploits the spectrum of primary network, the interference to the primary network should be minimized. In this paper, we propose a spectrum hole prediction based channel selection scheme to minimize the interference to the primary network. To predict spectrum hole, statistic properties of primary user's traffic is used. By using the predicted spectrum hole, channel is selected and it can reduce the possibility of interference to the primary user and increase the efficiency of spectrum utilization. The performance of proposed channel selection scheme is evaluated by the computer simulation.

Improved Convolutional Neural Network Based Cooperative Spectrum Sensing For Cognitive Radio

  • Uppala, Appala Raju;Narasimhulu C, Venkata;Prasad K, Satya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2128-2147
    • /
    • 2021
  • Cognitive radio systems are being implemented recently to tackle spectrum underutilization problems and aid efficient data traffic. Spectrum sensing is the crucial step in cognitive applications in which cognitive user detects the presence of primary user (PU) in a particular channel thereby switching to another channel for continuous transmission. In cognitive radio systems, the capacity to precisely identify the primary user's signal is essential to secondary user so as to use idle licensed spectrum. Based on the inherent capability, a new spectrum sensing technique is proposed in this paper to identify all types of primary user signals in a cognitive radio condition. Hence, a spectrum sensing algorithm using improved convolutional neural network and long short-term memory (CNN-LSTM) is presented. The principle used in our approach is simulated annealing that discovers reasonable number of neurons for each layer of a completely associated deep neural network to tackle the streamlining issue. The probability of detection is considered as the determining parameter to find the efficiency of the proposed algorithm. Experiments are carried under different signal to noise ratio to indicate better performance of the proposed algorithm. The PU signal will have an associated modulation format and hence identifying the presence of a modulation format itself establishes the presence of PU signal.

Fail-over Mechanisms based on Anycast for Stable IPv6 Recursive DNS Services (안정적인 IPv6 리커시브 DNS 서비스를 위한 애니캐스트 기반의 실패 복구 방안 연구)

  • Suh, Yu-Hwa;Kim, Kyung-Min;Shin, Yong-Tae;Song, Kwang-Ho;Kim, Weon;Park, Chan-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2B
    • /
    • pp.108-117
    • /
    • 2007
  • Recursive DNS is configured as primary or secondary DNS on user PC and performs domain name resolution corresponding user's DNS query. At present, the amount of DNS traffic is occupied high rate in the total internet traffic and the internet traffic would be increased by failure of IPv6 DNS queries and responses as IPv6 transition environment. Also, existing Recursive DNS service mechanisms is unstable on malicious user's attack same as DoS/DDoS Attack and isn't provide to user trust DNS service fail-over. In this paper, we propose IPv6 Recursive DNS service mechanisms for based on anycast for improving stability. It is that fail-over Recursive DNS is configured IPv6 Anycast address for primary Recursive DNS's foil-over. this mechanisms increases reliability and resiliency to DoS/DDoS attacks and reduces query latency and helps minimize DNS traffic as inducing IPv6 address.

A Cyclostationarity-Based Spectrum Sensing Scheme for Cognitive Radio Systems in High Traffic Circumstances (통화량이 많은 상황에서 인지 무선 시스템을 위한 Cyclostationarity 기반 스펙트럼 센싱 기법)

  • Kim, Youngje;Shim, Jeongyoon;Yoon, Seokho;Jang, Yong-Up;Jeong, Kilsoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.937-942
    • /
    • 2012
  • In cognitive radio (CR) systems, the secondary user (SU) performs the spectrum sensing to determine the presence of the primary user (PU) on the PU's frequency band. In practical cases, the PU would arrive and depart randomly in the sensing duration of the SU, which is referred to as the high traffic circumstance. In this paper, we propose a cyclostationarity-based spectrum sensing scheme for CR systems in high traffic circumstances. From numerical results, it is confirmed that the proposed scheme outperforms both the energy detector proposed for high traffic circumstances and the conventional cyclostationarity-based spectrum sensing scheme.

User Selection Scheme for the Performance Improvement of the Secondary System in Cognitive Radio Systems using Underlay Mode (후 순위 시스템의 성능 향상을 위한 언더레이 기반의 인지 무선 시스템의 사용자 선택 기법)

  • Choe, Romi;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.3
    • /
    • pp.249-257
    • /
    • 2013
  • Recently, data traffic is significantly increased by high rate data service. As a result, radio spectrum is considered one of the most scarce and valuable resources for wireless communications. For the solution of this problem, cognitive radio(CR) has been proposed as an efficient means to opportunistic spectrum sharing between primary (licensed) users and cognitive radio users. In this paper, user selection scheme in CR networks is proposed for additional consideration of secondary system. The proposed user selection scheme mitigates interference to primary user by using orthogonal channel vectors while improves performance of secondary system. Simulation results show that the proposed scheme achieves 1.62bps/Hz higher average throughput of whole system than one of the existing scheme.