• Title/Summary/Keyword: primary loading

Search Result 366, Processing Time 0.028 seconds

The Effect of Hydraulic Loading on the Performance of Biofilter System (수리부하량 변화에 따른 바이로필터의 처리효율에 관한 연구)

  • 방천희;김철성;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.789-794
    • /
    • 1999
  • The performance of a small on-site wastewater treatment system consisting of an anaerobic septic tank and upgraded absorbent biofilter was investgted . The anaerobic septic tank was used as a pre-treatment of the absorbent Biofitler instead of the primary clarifier. The treatment capacity of the system was examined by changing the hydraulinc loadings to the Absorbent Biofilter as 2.5㎥/day , 4.5㎥/day, 6.0㎥/day, respective. The effluent from the septic tank was fed into the Absorbent Bilfilter. Based on the experimental results, the quality of treated wastewater satisfied the regulation and the BOD and SS was removed down to approximately 5mg/$\ell$ and 1mg/$\ell$, respectively.

  • PDF

A Study on the Stability Problems of the Latticed Domes (래티스돔의 안정문제에 관한 연구)

  • 한상을
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.9-18
    • /
    • 1996
  • The primary objective of this paper is to grasp many characteristics of buckling behavior of latticed spherical domes under various conditions. The Arc-Length Method proposed by E.Riks is used for the computation and evaluation of geometrically nonlinear fundamental equilibrium paths and bifurcation points. And the direction of the path after the bifurcation point is decided by means of Hosono's concept. Three different nonlinear stiffness matrices of the Slope-Deflection Method are derived for the system with rigid nodes and results of the numerical analysis are examined in regard in geometrical parameters such as slenderness ratio, half-open angle, boundary conditions, and various loading types. But in case of analytical model 2 (rigid node), the post-buckling path could not be surveyed because of Newton-Raphson iteration process being diversed on the critical point since many eigenvalues become zero simultaneously.

  • PDF

An intelligent system for the design of RC slabs

  • Hossain, K.M.A.;Famiyesin, O.O.R.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.297-312
    • /
    • 2001
  • The accurate finite element (FE) simulation of reinforced concrete (RC) slabs, having different boundary conditions and subjected to uniformly distributed loading, has led to the use of the developed FE models for generating results of ultimate loads from predictions of 'computer-model' RC slabs having different material and geometric properties. Equations derived from these results constitute the primary database of an intelligent computer-aided-design (CAD) system developed for accurate and fast information retrieval on arbitrary slabs. The system is capable of generating a secondary database through systems of interpolation and can be used for design assistance purposes.

Optimum design of stiffened plates for static or dynamic loadings using different ribs

  • Virag, Zoltan;Jarmai, Karoly
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.255-266
    • /
    • 2020
  • The main requirements of modern welded metal structures are the load-carrying capacity (safety), fitness for production, and economy. The primary objective of attaching longitudinal stiffeners is to improve the buckling strength of relatively thin compression panels. This paper gives several comparisons for stiffened plates with different loadings (static, dynamic), different shape of stiffeners (flat, L-shape, trapezoidal), different steel grades, and different welding technologies (SMAW, GMAW, SAW), different costs to show the necessity of a combination of design, fabrication and economic aspects. Safety and fitness for production are guaranteed by fulfilling the design and fabrication constraints. The economy is achieved by minimizing the cost function. It is shown that the optimum sizes depend on the welding technology, the material yield stress, the profile of the stiffeners, the load cycles and the place of the production.

Creep Lifetime Prediction of Composite Geogrids using Stepped Isothermal Method

  • Koo, Hyun-Jin;Cho, Hang-Won
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.158-164
    • /
    • 2006
  • The creep behavior of newly developed composite geogrids which consists of PET yarns sheathed in PP were evaluated using SIM. For the SIM procedure, three test parameters, the applied loads, temperature steps and number of ribs were investigated, The study confirmed that temperature steps of 10 and 14$^{\circ}C$ up to 80$^{\circ}C$ are applicable for composite geogrids due to the different transition temperatures between two materials. At applied loads of 40 and 50%, only primary creep state was measured, while secondary creep state appeared at the applied loads of 60%, The lifetimes of composite geogrids were estimated at each of loading level using statistical reliability analysis technique. The results show that the lifetimes longer than 100 years can be predicted within 16 hours. Therefore, SIM is very effective and economical accelerated creep test methods, especially for lifetime prediction. This gives guidelines for users to select the appropriate factor of safety against creep considering the field condition within shorter test times.

  • PDF

Stress analysis of rotating annular hyperbolic discs obeying a pressure-dependent yield criterion

  • Jeong, Woncheol;Chung, Kwansoo
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.689-705
    • /
    • 2016
  • The Drucker-Prager yield criterion is combined with an equilibrium equation to provide the elastic-plastic stress distribution within rotating annular hyperbolic discs and the residual stress distribution when the angular speed becomes zero. It is verified that unloading is purely elastic for the range of parameters used in the present study. A numerical technique is only necessary to solve an ordinary differential equation. The primary objective of this paper is to examine the effect of the parameter that controls the deviation of the Drucker-Prager yield criterion from the von Mises yield criterion and the geometric parameter that controls the profile of hyperbolic discs on the stress distribution at loading and the residual stress distribution.

The Effects of Flexural Strength Ratio on High Strength Beam-Column Joint Subjected to Reversed Cyclic Loads (반복하중을 받는 고강도 철근콘크리트 보-기둥 접합부의 휨강성비에 관한 연구)

  • 이광수;오정근;문정일;권영호;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.63-67
    • /
    • 1990
  • The purpose of this study was to investigate the effects of flexural strength ratio(Mr=$\Sigma$Mc/$\Sigma$Mb) with High-Strength Concrete up to 800Kg/$\textrm{cm}^2$. Five specimens were tested under reversed cyclic loadings. The primary variables were flexural strength ratio of the beam-column, compressive strength of concrete and loading patterns. The results showed that the failure at the beam-column joint in case of high strength concrete was severe more than in case of normal strength concrete when flexural strength ratio 1.4. Thus the part for low limit of flexural strength ratio(Mr=1.4) should be revised for high strengthconcrete.

  • PDF

A Study of the Conceptual Design of Medium Size Utility Helicopter Rotor System (중형 헬리콥터 로터 시스템 개념설계 연구)

  • Kim, June-Mo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.33-41
    • /
    • 2005
  • This paper describes the conceptual design of medium size helicopter rotor system. Based on assumed design requirements, trade-off study for rotor configuration has been conducted in terms of rotor tip speed, disk loading, blade area, solidity, etc for estimated primary mission gross weight. For the main rotor, four-blade and five-blade rotors are studied with the conventional tail rotor. The performance analysis for baseline configuration is conducted using a helicopter performance analysis program. The analysis shows design results satisfy the design requirements.

An Enhanced Zone 3 Algorithm of a Distance Relay using Transient Components and State Diagram (과도성분과 상태도를 이용한 거리 계전기의 향상된 Zone 3 알고리즘)

  • Heo, J.Y.;Kim, C.H.;Park, N.O.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.245-247
    • /
    • 2003
  • Zone 3 of the distance relay is used to provide the remote back-up protection in case of the failure of the primary protection. However, the risk for mal-operations under stressed conditions such as heavy loading, voltage and transient instability is usually high. Zone 3 is used in combination with the derivatives of the voltage, and current, etc to prevent mal-operations. Sometimes, the impedance characteristics that restrict the tripping area of relay are used to avoid the mal-operations due to load encroachment. This paper presents a novel zone 3 scheme based on combining the steady-state components(i.e. 60Hz) and the transient components(TCs) using a state diagram that visualizes the sequence of studies that emanate from the sequence of events. The simulation results show that the novel zone 3 distance relay elements using the proposed method operates correctly for the various events.

  • PDF

Design and Characteristic Analysis of LSM for High Speed Train System using Magnetic Equivalent Circuit

  • Ham, Sang-Hwan;Cho, Su-Yeon;Kang, Dong-Woo;Lee, Hyung-Woo;Chan, Hong-Soon;Lee, Ju
    • International Journal of Railway
    • /
    • v.3 no.1
    • /
    • pp.14-18
    • /
    • 2010
  • This paper describes design and characteristic analysis of long primary type linear synchronous motor (LSM) for high speed train system. LSM is designed using loading distribution method and magnetic equivalent circuit. For characteristic analysis of LSM, analytical and numerical methods are applied. Analytical method for solving the magnetic field distribution of the analytic model is based on the Maxwell’s equations. Using the characteristic equation and magnetic equivalent circuit, we analyze the effect of variation of parameters, and then we validate the result by comparing with numerical method by finite element method (FEM). We compare the analytical method with numerical method for analyzing the effect by variable parameters. This result will be useful of design and forecast of performance without FEM.

  • PDF