• 제목/요약/키워드: primary energy use

Search Result 236, Processing Time 0.027 seconds

Numerical Study on Supersonic Flow in the Second Throat Ejector-Diffuser System (이차목 이젝터/디퓨저 시스템을 통하는 초음속 유동에 관한 수치해석적 연구)

  • 김희동;이영기;서태원;김윤곤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.14-14
    • /
    • 1998
  • The ejector is a device which employs a high-velocity primary motive fluid to entrain and accelerate a slower moving secondary suction fluid. The resulting kinetic energy of the mixture is subsequently used for self-compression to a higher pressure, thus performing the function of a compressor. The outstanding advantages of the ejectors are simplicity and reliability. However the industrial use of ejectors has been confined mainly to very particular cases of operation. The experimental results obtained so far were insufficient to be made use of general cases. Large-sized modern ejectors, mainly driven by high powered air-compressors and designed for very wide ranges of operating conditions, cannot be based on the earlier research results, if we wish to be sure of the final outcome.

  • PDF

Performance Analysis of Collaborative Wideband Sensing Scheme based on Energy Detection with User Selection for Cognitive Radio (에너지검출 기반 협력 광대역 센싱에서 사용자 선택에 따른 센싱 성능 분석)

  • Lee, Mi-Sun;Kim, Yoon-Hyun;Kim, Jin-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.72-77
    • /
    • 2011
  • Spectrum sensing is a critical functionality of CR network; it allow secondary user to detect spectral holes and to opportunistically use under-utilized frequency bands without causing harmful interference to primary use. Recently, wideband service has been increase for processing abundance of data traffic. So CR network needs a realizable implementation design of spectrum sensing for wideband. To get high resolution performance of wideband sensing must precede algorithm processing for reliability signal detection. By the way, the performance of spectrum sensing can be degraded due to fading and shadowing. In order to overcome this problem, we propose system model of wideband sensing scheme on energy detected collaborative technique. we divide wideband into narrowbands and use narrowbands to detect signal excepting some narrowbands including bad channel through the CSI. And we simulate and analyze in terms of detection probability with various SNR.

Characterization of MABIK Microalgae with Biotechnological Potentials

  • Jo, Seung-Woo;Kang, Nam Seon;Lee, Jung A;Kim, Eun Song;Kim, Kyeong Mi;Yoon, Moongeun;Hong, Ji Won;Yoon, Ho-Sung
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.40-49
    • /
    • 2020
  • This article emphasized the physiological characteristics of the selected marine microalgal strains obtained from the culture collection of the National Marine Biodiversity Institute of Korea (MABIK). Therefore, in this study, 13 different marine microalgal strains belonging to the phylum Chlorophyta were analyzed for the composition of fatty acids, elements, photosynthetic pigments, and monosaccharides, as well as the lipid and protein contents. The results presented that the primary fatty acids were palmitic (C16:0), palmitoleic (C16:1 n-7), stearic (C18:0), oleic (C18:1 n-9), linoleic (C18:2 n-6), and α-linolenic (ALA, C18:3 n-3) acid in the evaluated microalgae. The lipid contents of heterotrophically grown strains ranged from 15.1% to 20.4%. The calorific values of the strains were between 17.4 MJ kg-1 and 21.3 MJ kg-1. The major monosaccharides were galactose, glucose, and mannose, while the primary photosynthetic pigments were chlorophyll-a (Chla), chlorophyll-b (Chlb), and lutein, respectively. Based on the results, the microalgal strains showed high potentials in the use of microalgae-based technologies to produce biochemicals, food, and renewable fuels as they are rich in sustainable sources of high-value bio-compounds, such as antioxidants, carbohydrates, and fatty acids.

The Eating Behaviors, Nutrient Intakes and Hematological Status of the Lower Grade Primary School Children in Gwangiu (광주지역 일부 초등학교 저학년 아동의 식습관과 영양소 섭취량 및 혈액성상에 관한 연구)

  • 황금희;정난회;유맹자
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.4
    • /
    • pp.293-299
    • /
    • 2001
  • The purpose of this study was to examine height, weight. chest circumference, sitting height, hematological status. eating behaviors and nutrient intakes for the lower grade primary school children in Gwangju. The subjects consisted of 76 boys and 60 girls aged 9 years old. Height, Weight, Chest circumference, Sitting height, Hct, WBC, RBC, Hb, serum GOT, GPT and cholesterol were measured. With regard to regularity of meal time, 66.7% of the subjects has been 'regular'. With regaled to amount of eaten food, 100.0% of the subjects has been 'moderate'. With regard to nutritional balance, 66.6% of the subjects has been 'think,but do not practice'. The study also found that 100.0% of the subjects skipped breakfast, liked korean food. Their dietary intake vase assesed for 1 day by means of 24 hours dietary recall method. The mean energy intake of the subjects was 1,306 kcal. The subjects consumed 47.9g protein, 28.8g lipid, 3.9g fiber, 446.9mg calcium, 835.0mg phosphorous, 7.9mg iron, 3,721mg sodium, 1.863mg potassium, 362.3RE retinol, 0.8mg thiamin, 1.1mg riboflavin, 10.8NE niacin, 93.9mg ascorbic acrid and 173.5mg cholesterol respectively. Energy, protein, calcium, iron, retinol, thiamin, riboflavin and niacin intake was lower than the Korean RDA. There were positive correlations between meal time and protein intake or fat intake or fiber intake or iron intake or retinol intake : negative correlations between meal time and sodium intake negative correlations between saltiness and cholesterol intake positive correlations between use of perilla seeds and riboflavin intake or niacin intake : negative correlations between energy intake or carbohydrate intake or phosphorous intake : negative correlations between frequency of eating-out and protein intake or fat intake or fiber intake or iron intake or retinol intake or thiamin intake or riboflavin intake or niacin intake.

  • PDF

A case study on design and construction of daylighting system of office building (사무용 건축물의 자연채광 설계 및 시공사례 연구)

  • Kim, Ilho;Choi, Yongjun;Park, Kyoungwoo;Lee, Sungjin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.59.2-59.2
    • /
    • 2010
  • Throughout history, daylight has been a primary source of lighting in buildings, supplemented originally with burned fuels and more recently with electrical energy. Before daylight was supplemented or replaced with electric light in the late 19th-century, consideration of good daylight strategies was essential. As we entered the mid-20th-century, electric light supplanted daylight in buildings in many cases. Fortunately, during the last quarter of the 20th-century and early years of this century, architects and designers have recognized the importance and value of introducing natural light into buildings. There are many simple strategies that can enhance daylighting and reduce the need for electric lights. Good quality daylight is always welcome, but remember that the electric lights must be dimmed or shut off in order for daylighting to save energy. We designed and built mirror systems and vertical daylighting devices to improve daylight condition of office buildings in bad condition because urban density is getting higher. This case study aims to analysis the principles and characteristics of mirror systems and vertical daylighting devices and selected the method that can improve constructability. The results of this study are going to use the back data to set-up the design standards. Hereafter we're going to progress the performance test and product the design manual to improve applicability of daylighting systems at design phase.

  • PDF

Reactor Power Cutback System Test Experience at YGN 4

  • Chi, Sung-Goo;Kim, Se-Chang;Seo, Jong-Tae;Eom, Young-Meen;Wook, Jeong-Dae;Park, Young-Boo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.235-241
    • /
    • 1995
  • YGN 3 and 4 are the nuclear power plants having System 80 characteristics with a rated thermal output of 2815 MWth and a nominal net electrical output of 1040 MWe. YGN 3 achieved commercial operation on March 31, 1995 and YGN 4 completed Power Ascension Test (PAT) at 20%, 50%, 80% and 100% power by September 23, 1995. YGN 3 and 4 design incorporates the Reactor Power Cutback System (RPCS) which reduces plant trips caused by Loss of Load (LOL)/Turbine Trip and Loss of One Main Feedwater Pump (LOMFWP). The key design objective of the RPCS is to improve overall plant availability and performance, while minimizing challenges to the plant safety systems. The RPCS is designed to rapidly reduce reactor power by dropping preselected Control Element Assemblies (CEAs) while other NSSS control systems maintain process parameters within acceptable ranges. Extensive RPCS related tests performed during the initial startup of YGN 4 demonstrated that the RPCS can maintain the reactor on-line without opening primary or secondary safety valves and without actuating the Engineered Safety Features Actuation System (ESFAS). It is expected that use of the RPCS at YGN will increase the overall availability of the units and reduce the number of challenges to plant safety systems.

  • PDF

High Boost Converter Using Voltage Multiplier (배압회로를 이용한 고승압 컨버터)

  • Baek Ju-Won;Kim Jong-Hyun;Ryoo Myung-Hyo;Yoo Dong-Wook;Kim Jong-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.8
    • /
    • pp.416-422
    • /
    • 2006
  • With the increasing demand for renewable energy, distributed power included in fuel cells have been studied and developed as a future energy source. For this system, a power conversion circuit is necessary to interface the generated power to the utility. In many cases, a high step-up dc/dc converter is needed to boost low input voltage to high voltage output. Conventional methods using cascade dc/dc converters cause extra complexity and higher cost. The conventional topologies to get high output voltage use flyback dc/dc converters. They have the leakage components that cause stress and loss of energy that results in low efficiency. This paper presents a high boost converter with a voltage multiplier and a coupled inductor. The secondary voltage of the coupled inductor is rectified using a voltage multiplier and series-connected with the boost voltage of primary voltage of the coupled inductor. Therefore, high boost voltage is obtained with low duty cycle. Theoretical analysis and experimental results verify the proposed solutions using a 300W prototype.

Geothermal Power Generation using Enhanced or Engineered Geothermal System(EGS) (공학적인 지열시스템(EGS)을 이용한 지열발전 기술)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.3-32
    • /
    • 2008
  • The potential deep geothermal resources span a wide range of heat sources from the earth, including not only the more easily developed, currently economic hydrothermal resources; but also the earth's deeper, stored thermal energy, which is present anywhere. At shallow depths of 3,000~10,000m, the coincidence of substantial amounts heat in hot rock, fluids that heat up while flowing through the rock and permeability of connected fractures can result in natural hot water reservoirs. Although conventional hydrothermal resources which contain sufficient fluids at high temperatures and geo-pressures are used effectively for both electric and nonelectric applications in the world, they are somewhat limited in their location and ultimate potential for supplying electricity. A large portion of the world's geothermal resource base consists of hot dry rock(HDR) with limited permeability and porosity, an inadquate recharge of fluids and/or insufficient water for heat transport. An alternative known as engineered or enhanced geothermal systems(EGS), to dependence on naturally occurring hydrothermal reservoirs involves human intervention to engineer hydrothermal reservoirs in hot rocks for commercial use. Therefore EGS resources are with enormous potential for primary energy recovery using an engineered heat mining technology, which is designed to extract and utilize the earth's stored inexthermal energy. Because EGS resources have a large potential for the long term, United States focused his effort to provide 100GW of 24-hour-a-day base load electric-generating capacity by 2050.

  • PDF

SACADA and HuREX: Part 1. the use of SACADA and HuREX systems to collect human reliability data

  • Chang, Yung Hsien James;Kim, Yochan;Park, Jinkyun;Criscione, Lawrence
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1686-1697
    • /
    • 2022
  • As a part of probabilistic risk (or safety) assessment (PRA or PSA) of nuclear power plants (NPPs), the primary role of human reliability analysis (HRA) is to provide credible estimations of the human error probabilities (HEPs) of safety-critical tasks. Accordingly, HRA community has emphasized the accumulation of HRA data to support HRA practitioners for many decades. To this end, it is critical to resolve practical problems including (but not limited to): (1) how to collect HRA data from available information sources, and (2) how to inform HRA practitioners with the collected HRA data. In this regard, the U.S. Nuclear Regulatory Commission (NRC) and Korea Atomic Energy Research Institute (KAERI) independently initiated two large projects to accumulate HRA data by using full-scale simulators (i.e., simulator data). In terms of resolving the first practical problem, the NRC and KAERI developed two dedicated HRA data collection systems, SACADA (Scenario Authoring, Characterization, And Debriefing Application) and HuREX (Human Reliability data EXtraction), respectively. In addition, to inform HRA practitioners, the NRC and KAERI proposed several ideas to extract useful information from simulator data. This paper is the first of two papers to discuss the technical underpinnings of the development of the SACADA and HuREX systems.

Decomposition of primary tar influenced by char particle types and reaction time during biomass gasification (바이오매스 가스화시 촤 입자 종류 및 반응시간에 따른 일차타르의 분해 특성)

  • Park, Jinje;Lee, Yongwoon;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.33-36
    • /
    • 2014
  • Gasification of biomass produces syngas containing CO, $H_2$ and/or $CH_4$, which can then be converted into energy or value-added fuels. One of key issues for efficient gasification is to minimize tar concentration in the syngas for use in a final conversion device such as gas engine. This study investigated the decomposition of primary tar by catalytic cracking using char as catalyst, of which the feature can be integrated into a fixed bed gasifier design. The pyrolysis vapor containing tar from pyrolysis of wood at $500^{\circ}C$ was passed through a reactor filled with or without char at $800^{\circ}C$ for a residence time of 1, 3 or 5 sec. Then, the condensable vapor (water and tar) and gases were analyzed for the yields and elemental composition. Four types of char particles with different microscopic surface area and pore size distribution: wood, paddy straw, palm kernel shell and activated carbon. The results were analyzed for the mass and carbon yields of tar and the composition of product gases to conclude the effects of char types and residence time.

  • PDF