• Title/Summary/Keyword: primary energy conversion

Search Result 63, Processing Time 0.022 seconds

Optical Monte Carlo Simulation on Spatial Resolution of Phosphor Coupled X-ray Imaging Detector (형광체 결합형 X선 영상검출기의 공간 해상력 몬테카를로 시뮬레이션)

  • Kang, Sang-Sik;Kim, So-Yeong;Shin, Jung-Wook;Heo, Sung-Wook;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.328-328
    • /
    • 2007
  • Large area matrix-addressed image detectors are a recent technology for x-ray imaging with medical diagnostic and other applications. The imaging properties of x-ray pixel detectors depend on the quantum efficiency of x-rays, the generated signal of each x-ray photon and the distribution of the generated signal between pixels. In a phosphor coated detector the light signal is generated by electrons captured in the phosphor screen. In our study we simulated the lateral spread distributions for phosphor coupled detector by Monte Carlo simulations. Most simulations of such detectors simplify the setup by only taking the conversion layer into account neglecting behind. The Monte Carlo code MCNPX has been used to simulate the complete interaction and subsequent charge transport of x-ray radiation. This has allowed the analysis of charge sharing between pixel elements as an important limited factor of digital x-ray imaging system. The parameters are determined by lateral distribution of x-ray photons and x-ray induced electrons. The primary purpose of this study was to develop a design tool for the evaluation of geometry factor in the phosphor coupled optical imaging detector. In order to evaluate the spatial resolution for different phosphor material, phosphor geometry we have developed a simulation code. The developed code calculates the energy absorption and spatial distribution based on both the signal from the scintillating layer and the signal from direct detection of x-ray in the detector. We show that internal scattering contributes to the so-called spatial resolution drop of the image detector. Results from the simulation of spatial distribution in a phosphor pixel detector are presented. The spatial resolution can be increased by optimizing pixel size and phosphor thickness.

  • PDF

High-k ZrO2 Enhanced Localized Surface Plasmon Resonance for Application to Thin Film Silicon Solar Cells

  • Li, Hua-Min;Zang, Gang;Yang, Cheng;Lim, Yeong-Dae;Shen, Tian-Zi;Yoo, Won-Jong;Park, Young-Jun;Lim, Jong-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.276-276
    • /
    • 2010
  • Localized surface plasmon resonance (LSPR) has been explored recently as a promising approach to increase energy conversion efficiency in photovoltaic devices, particularly for thin film hydrogenated amorphous silicon (a-Si:H) solar cells. The LSPR is frequently excited via an electromagnetic (EM) radiation in proximate metallic nanostructures and its primary con sequences are selective photon extinction and local EM enhancement which gives rise to improved photogeneration of electron-hole (e-h) pairs, and consequently increases photocurrent. In this work, high-dielectric-constant (k) $ZrO_2$ (refractive index n=2.22, dielectric constant $\varepsilon=4.93$ at the wavelength of 550 nm) is proposed as spacing layer to enhance the LSPR for application to the thin film silicon solar cells. Compared to excitation of the LSPR using $SiO_2$ (n=1.46, $\varepsilon=2.13$ at the wavelength of 546.1 nm) spacing layer with Au nanoparticles of the radius of 45nm, that using $ZrO_2$ dielectric shows the advantages of(i) ~2.5 times greater polarizability, (ii) ~3.5 times larger scattering cross-section and ~1.5 times larger absorption cross-section, (iii) 4.5% higher transmission coefficient of the same thickness and (iv) 7.8% greater transmitted electric filed intensity at the same depth. All those results are calculated by Mie theory and Fresnel equations, and simulated by finite-difference time-domain (FDTD) calculations with proper boundary conditions. Red-shifting of the LSPR wavelength using high-k $ZrO_2$ dielectric is also observed according to location of the peak and this is consistent with the other's report. Finally, our experimental results show that variation of short-circuit current density ($J_{sc}$) of the LSPR enhanced a-Si:H solar cell by using the $ZrO_2$ spacing layer is 45.4% higher than that using the $SiO_2$ spacing layer, supporting our calculation and theory.

  • PDF

Standardization of the Method of Measuring Average Glandular Dose (AGD) and Evaluation of the Breast Composition and Thickness for AGD (평균 유선선량 측정방법의 표준화 및 유방 두께, 실질양상과의 상관관계 분석)

  • Park, Hye-Suk;Kim, Hee-Joung;Lee, Chang-Lae;Cho, Hyo-Min;Yu, A-Ram
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.21-29
    • /
    • 2009
  • Breast cancer is the most common form of cancer among korean woman. Therefore, the early detection activities of breast cancer such as breast self-examinations, clinical breast examinations, mammography are important. A yearly mammography examination has been recommended for women aged 40 and older for the early detection of breast cancer in asymptomatic periods. However, the glandular tissue of breast is the most radiation-sensitive tissue, and the determination of average glandular dose (AGD) forms an important part of the quality control of the mammographic systems. Because of the difficulty of estimating AGD directly, it is often estimated from the measurements of the incident air kerma and by applying the appropriate conversion factors. The primary objective of this study was to standardize the method of measuring AGD. The secondary objective was to evaluate the relationships between AGD per various composition and thickness of the breast using Monte Carlo simulations. As a result, we standardized the method of measuring AGD according to International Atomic Energy Agency (IAEA) guidelines (CoP: an international code of practice). Overall, AGD for mammographic practice in Korea was less than 3.0 mGy recommended by the Korea Food and Drug Adminstration (KFDA) protocol, and Korean Institute for Accreditation of Medical Image (KIAMI). The measured and simulated AGD for a given condition were calculated as 1.7 and 1.6 mGy, respectively. For the AGDs obtained, there was no significant difference between them. The simulated AGD was dependent on the fraction of glandular tissue of the breast. The AGD increases with increasing of the breast glandularity due to increasing absorption of low energy photons. The AGD also increases as a function of breast thickness. In conclusion, the results of this study could be used as a baseline to establish a reference level of radiation dose in mammography.

  • PDF