• Title/Summary/Keyword: primary calibration

Search Result 117, Processing Time 0.025 seconds

Standardization of work environment measurement information for constructing exposure surveillance system (노출감시체계 구축을 위한 작업환경측정 정보 표준화)

  • Choi, Sangjun;Jeong, Jee Yoen;Im, Sungguk;Lim, Daesung;Koh, Dong-Hee;Park, Donguk;Park, YunKyung;Kim, Soyeon;Chung, Eunkyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.322-335
    • /
    • 2019
  • Objectives: The goal of this study is to standardize industry, process, and job within work environment measurement information. Methods: We selected 180 work environment measurement reports on 30 industries from a database monitored from 2014 to 2016 by the Korea Industrial Health Association. Ten industrial hygienists, each with over five years of experience in measurement, conducted a primary standardization of 180 reports. Two professional industrial hygienists with more than 20 years of experience each reviewed and revised the results of the primary standardization. We also examined the validity on the usefulness of the standardized database by the two industrial hygienists. Results: The final standardization results were classified into eight major categories, 23 sub-major categories, 39 minor categories, 53 unit categories and 70 sub-unit categories in the Korean Standard Industrial Classification (KSIC) 10th revision. A total of 161 processes were standardized, and there were 148 processes with K2B codes. Standard job was coded into 13 job groups including operator, automobile maintenance, nurse, maintenance, manager, excavating machine operator, forklift driver, radiologist, clinical pathologist, signer, researcher, kitchen assistant, and concrete reinforcement ironworker. Conclusions: Although the standardized information in this study may be only a part of the total information, it can be useful for improvement of the K2B system. Additional research is needed for an ongoing clean-up of data in the K2B and re-calibration and reclassification of standard processes until the future national exposure monitoring system is fully established.

Determination of Layer Thickness of A/B Type Multilayer Films in SIMS Depth Profiling Analysis

  • Hwang, Hyun-Hye;Jang, Jong-Shik;Kang, Hee-Jae;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.231-231
    • /
    • 2012
  • Correct determination of the interface locations is critical for the calibration of the depth scale and measurement of layer thickness in SIMS depth profiling analysis of multilayer films. However, the interface locations are difficult to determine due to the unwanted distortion from the real ones by the several effects due to sputtering with energetic ions. In this study, the layer thicknesses of Si/Ge and Si/Ti multilayer films were measured by SIMS depth profiling analysis using the oxygen and cesium primary ion beam. The interface locations in the multilayer films could be determined by two methods. The interfaces can be determined by the 50 at% definition where the atomic fractions of the constituent layer elements drop or rise to 50 at% at the interfaces. In this method, the raw depth profiles were converted to compositional depth profiles through the two-step conversion process using the alloy reference relative sensitivity factors (AR-RSF) determined by the alloy reference films with well-known compositions determined by Rutherford backscattering spectroscopy (RBS). The interface locations of the Si/Ge and Si/Ti multilayer films were also determined from the intensities of the interfacial composited ions (SiGe+, SiTi+). The determination of the interface locations from the composited ions was found to be difficult to apply due to the small intensity and the unclear variation at the interfaces.

  • PDF

FAST QUANTITATIVE AND QUALITATIVE ANALYSIS OF PHARMACEUTICAL TABLETS BY NIR

  • Nielsen, Line-Lundsberg;Charlotte Kornbo;Mette Bruhn
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3111-3111
    • /
    • 2001
  • The implementation of NIR and chemometrics in the Pharmaceutical industries is still in strong progress, both regarding qualitative and quantitative applications and beneficial results are seen. Looking at the development so far, NIR will change the pharmaceutical industry even more in the future. This presentation will address the experiences and progress achieved regarding the application and implementation of quantitative methods for determination of content uniformity and assay of tablets with less than 10% w/w of active, using Near Infrared transmittance spectroscopy in combination with PLS. Also qualitative methods for identification of the same tablets by Near Infrared reflectance spectroscopy will be discussed. Four commercial tablet strengths are formulated and produced from two different compositions by direct compression. Three different strengths are dose proportional, i.e. fixed concentration by varying in size. The aim was to replace the conventional primary methods for analysing content uniformity, assay and identification by NIR. Studies were performed on comparing transmittance versus reflectance spectroscopy for both applications on the dose proportional tablets. The model for determination of content uniformity and assay was developed to cover both coated and uncoated tablets, whereas the qualitative model was developed to identify coated tablets only. The impact of the tablet formulation, tablet size and coating, resulted in individual models far each composition The best calibration was achieved using diffuse reflectance for the identification purposes and diffuse transmittance for the quantitative determination of the active content within the tablets. As NIR in combination with other techniques opens up the possibility of total quality management within the production, the transfer of the above-mentioned models from a laboratory based approach to an at-line approach at H.Lundbeck will be addressed too.

  • PDF

An analysis of Electro-Optical Camera (EOC) on KOMPSAT-1 during mission life of 3 years

  • Baek Hyun-Chul;Yong Sang-Soon;Kim Eun-Kyou;Youn Heong-Sik;Choi Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.512-514
    • /
    • 2004
  • The Electro-Optical Camera (EOC) is a high spatial resolution, visible imaging sensor which collects visible image data of the earth's sunlit surface and is the primary payload on KOMPSAT-l. The purpose of the EOC payload is to provide high resolution visible imagery data to support cartography of the Korean Peninsula. The EOC is a push broom-scanned sensor which incorporates a single nadir looking telescope. At the nominal altitude of 685Km with the spacecraft in a nadir pointing attitude, the EOC collects data with a ground sample distance of approximately 6.6 meters and a swath width of around 17Km. The EOC is designed to operate with a duty cycle of up to 2 minutes (contiguous) per orbit over the mission lifetime of 3 years with the functions of programmable gain/offset. The EOC has no pointing mechanism of its own. EOC pointing is accomplished by right and left rolling of the spacecraft, as needed. Under nominal operating conditions, the spacecraft can be rolled to an angle in the range from +/- 15 to 30 degrees to support the collection of stereo data. In this paper, the status of EOC such as temperature, dark calibration, cover operation and thermal control is checked and analyzed by continuously monitored state of health (SOH) data and image data during the mission life of 3 years. The aliveness of EOC and operation continuation beyond mission life is confirmed by the results of the analysis.

  • PDF

External Quality Assessment Scheme for Biological Monitoring of Occupational Exposure to Toxic Chemicals

  • Lee, Mi-Young;Yang, Jeong-Sun;Kang, Seong-Kyu
    • Safety and Health at Work
    • /
    • v.2 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • Objectives: In this study, we summarized the External Quality Assessment Scheme (EQAS) for the biological monitoring of occupational exposure to toxic chemicals which started in 1995 and continued until a $31^{st}$ round robin in the spring of 2010. The program was performed twice per year until 2009, and this was changed to once a year since 2010. The objective of the program is to ensure the reliability of the data related to biological monitoring from analytical laboratories. Methods: One hundred and eighteen laboratories participated in the $31^{st}$ round robin. The program offers 5 items for inorganic analysis: lead in blood, cadmium in blood, manganese in blood, cadmium in urine, and mercury in urine. It also offers 10 items for organic analysis, including hippuric acid, methylhippuric acid, mandelic acid, phenylglyoxylic acid, N-methylformamide, N-methylacetamide, trichloroacetic acid, total trichloro-compounds, trans,trans-muconic acid, and 2,5-hexanedione in urine. Target values were determined by statistical analysis using consensus values. All the data, such as chromatograms and calibration curves, were reviewed by the committee. Results: The proficiency rate was below 70% prior to the first round robin and improved to over 90% for common items, such as PbB and HA, while those for other items still remained in the range of 60-90% and need to be improved up to 90%. Conclusion: The EQAS has taken a primary role in improving the reliability of analytical data. A total quality assurance scheme is suggested, including the validation of technical documentation for the whole analytical procedure.

Development of Multisite Spatio-Temporal Downscaling Model for Rainfall Using GCM Multi Model Ensemble (다중 기상모델 앙상블을 활용한 다지점 강우시나리오 상세화 기법 개발)

  • Kim, Tae-Jeong;Kim, Ki-Young;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.327-340
    • /
    • 2015
  • General Circulation Models (GCMs) are the basic tool used for modelling climate. However, the spatio-temporal discrepancy between GCM and observed value, therefore, the models deliver output that are generally required calibration for applied studies. Which is generally done by Multi-Model Ensemble (MME) approach. Stochastic downscaling methods have been used extensively to generate long-term weather sequences from finite observed records. A primary objective of this study is to develop a forecasting scheme which is able to make use of a MME of different GCMs. This study employed a Nonstationary Hidden Markov Chain Model (NHMM) as a main tool for downscaling seasonal ensemble forecasts over 3 month period, providing daily forecasts. Our results showed that the proposed downscaling scheme can provide the skillful forecasts as inputs for hydrologic modeling, which in turn may improve water resources management. An application to the Nakdong watershed in South Korea illustrates how the proposed approach can lead to potentially reliable information for water resources management.

STATUS OF GOCI DATA PROCESSING SYSTEM(GDPS) DEVELOPMENT

  • Han, Hee-Jeong;Ahn, Yu-Hwan;Ryu, Joo-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.159-161
    • /
    • 2007
  • Geostationary Ocean Color Imager (GOCI), the world-first ocean remote sensing instrument on geostationary Communication, Ocean, Meteorological Satellite (COMS), will be able to take a picture of a large region several times a day (almost with every one hour interval). We, KORDI, are in charge for developing the GOCI data processing system (GDPS) which is the basic software for processing the data from GOCI. The GDPS will be based on windows operating system to produce the GOCI level 2 data products (useful for oceanographic environmental analysis) automatically in real-time mode. Also, the GDPS will be a user-interactive program by well-organized graphical user interfaces for data processing and visualization. Its products will be the chlorophyll concentration, amount of total suspended sediments (TSS), colored dissolved organic matters (CDOM) and red tide from water leaving radiance or remote sensing reflectance. In addition, the GDPS will be able to produce daily products such as water current vector, primary productivity, water quality categorization, vegetation index, using individual observation data composed from several subscenes provided by GOCI for each slit within the target area. The resulting GOCI level 2 data will be disseminated through LRIT using satellite dissemination system and through online request and download systems. This software is carefully designed and implemented, and will be tested by sub-contractual company until the end of this year. It will need to be updated in effect with respect to new/improved algorithms and the calibration/validation activities.

  • PDF

Measurement Uncertainty of Methane Concentrations from a Rice Paddy Measured by a Closed Automated Chamber System (벼논에서 폐쇄형 자동 챔버 시스템으로 측정한 메탄 농도에 대한 요인별 측정 불확도 비교)

  • Ju, Ok Jung;Kang, Namgoo;Lim, Gap June
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.228-236
    • /
    • 2020
  • BACKGROUND: The closed chamber method is the most commonly used for measuring greenhouse gas emissions from rice fields. This method has the advantages of being simple, easily available and economical. However, a measurement result using the chamber method is an estimated value and is complete when the uncertainty is estimated. The methane emissions from a rice paddy account for the largest portion of the greenhouse gas emissions in the agriculture sectors. Although assessment of uncertainty components affecting methane emission from a rice paddy is necessary to take account of dispersion characteristics, research on these uncertainty components is very rare to date. The goal of this study was to elucidate influencing factors on measurement uncertainty of methane concentrations measured by a closed automated chamber system from a rice paddy. METHODS AND RESULTS: The methane sampling system is located in the rice paddy in Gyeonggi-do Agricultural Research and Extension Services (37°13'15"N, 127°02'22"E). The primary measurement uncertainty components influencing methane concentrations (influencing factors) investigated in this research were repeatability, reproducibility and calibration in the aspects of methane sampling and analytical instrumentation. The magnitudes of the relative standard uncertainty of each influencing factor were quantified and compared. CONCLUSION: Results of this study showed what influencing factors were more important in determination of methane concentrations measured using the chamber system and analytical instrumentation located in the monitoring site. Quantifying the measurement uncertainty of the methane concentrations in this study would contribute to improving measurement quality of methane fluxes.

Measurement Uncertainty of Nitrous Oxide Concentrations from a Upland Soil Measured by an Automated Open Closed Chamber Method (밭토양에서 폐쇄형 자동 챔버법으로 측정한 아산화질소 농도에 대한 측정 불확도)

  • Ju, Ok Jung;Kang, Namgoo;Lim, Gap June
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • BACKGROUND: The closed chamber method is the most commonly used for measuring greenhouse gas emissions from upland fields. This method has the advantages of being simple, easily available and economical. However, uncertainty estimation is essential for accurate assessment of greenhouse gas emissions and verification of emission reductions. The nitrous oxide emissions from upland field is very important for the nitrogen budget in the agriculture sectors. Although assessment of uncertainty components affecting nitrous oxide emission from upland field is necessary to take account of dispersion characteristics, research on these uncertainty components is very rare to date. This study aims at elucidation of influencing factors on measurement uncertainty of nitrous oxide concentrations measured by an automated open closed chamber method from upland field. METHODS AND RESULTS: The nitrous oxide sampling system is located in the upland field in Gyeonggi-do Agricultural Research and Extension Services (37°13'22"N, 127°02'22"E). The primary measurement uncertainty components influencing nitrous oxide concentrations (influencing factors) investigated in this research are repeatability, reproducibility and calibration in the aspects of nitrous oxide sampling and analytical instrumentation. The magnitudes of the relative standard uncertainty of each influencing factor are quantified and compared. CONCLUSION: Results of this study show what influencing factors are more important in determination of nitrous oxide concentrations measured using the automated open closed chambers located in the monitoring site. Quantifying the measurement uncertainty of the nitrous oxide concentrations in this study would contribute to improving measurement quality of nitrous oxide fluxes.

Estimation Suspended Solids Concentration of the Doam Reservoir under Dry and Wet Weather Conditions (강수조건에 따른 도암호 부유물질 거동 평가)

  • Choi, Jae-Wan;Shin, Dong-Seok;Lim, Kyoung-Jae;Lee, Sang-Soo;Kang, Min-Ji
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.113-121
    • /
    • 2012
  • BACKGROUND: The Doam watershed in Korea has been managed for the reduction and the prevention of non-point source pollution since 2007. Especially, the water quality of the Doam reservoir is a primary issue related to the Doam dam reoperation. We have carried out the modeling to evaluate the water quality based on suspended solids (SS) of the Doam watershed and the Doam reservoir. Two powerful hydrological and water quality models (HSPF and CE-QUAL-W2) were employed to simulate the combined processes of water quantity and quality both in the upland watershed of the Doam reservoir and the downstream waterbody. METHODS AND RESULTS: The HSPF model was calibrated and validated for streamflow and SS. The CE-QUAL-W2 was calibrated for water level, water temperature, and SS and was validated for the only water level owing to data lack. With the parameters obtained through the appropriate calibration, SS concentrations of inflow into and in the Doam reservoir were simulated for three years (2008, 2004 and 1998) of the minimum, the average, and the maximum of total annual precipitation during recent 30 years. The annual average SS concentrations of the inflow for 2008, 2004, and 1998 were 8.6, 10.9, and 18.4 mg/L, respectively and those in the Doam reservoir were 9.2, 13.8, and 21.5 mg/L. CONCLOUSION(s): The results showed that more intense and frequent precipitation would cause higher SS concentration and longer SS's retention in the reservoir. The HSPF and the CE-QUAL-W2 models could represent reasonably the SS from the Doam watershed and in the Doam reservoir.