• Title/Summary/Keyword: prestressed tendon

Search Result 193, Processing Time 0.021 seconds

Mechanical Behavior of Anchorage Zones in Prestressed Concrete Members with Single and Closely-Spaced Anchorages (단일텐던 및 복수텐던이 설치된 프리스트레스트 콘크리트 부재의 정착부 거동 연구)

  • Oh, Byung Hwan;Lim, Dong Hwan;Yoo, Seung Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1329-1339
    • /
    • 1994
  • The purpose of present study is to explore the mechanical behavior of anchorage zones in prestressed concrete members with single and closely-spaced multiple tendon anchorages. The cracking loads and local stress distributions at these anchorage zones are studied. To this end, a series of experiments have been conducted. From this study, it is found that the failure of anchorage zones of the closely-spaced multiple tendon members is initiated by cracking along the tendon path and that the tensile stresses arising in the vicinity of anchorage zone of the first tendon are reduced due to additional compression of the second tendon. This results in the increase of cracking capacity of the member. The effects of multiple tendons are presented in the form of strain distribution and cracking load comparisons.

  • PDF

Analytical Study on the Inelastic Behavior of Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각의 비탄성거동에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.29-40
    • /
    • 2005
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

Analytical Study on Joints in Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각의 접합부에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.79-87
    • /
    • 2007
  • This paper presents an analysis procedures of Joints in precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbended tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for joints in precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

Development of a novel self-centering buckling-restrained brace with BFRP composite tendons

  • Zhou, Z.;He, X.T.;Wu, J.;Wang, C.L.;Meng, S.P.
    • Steel and Composite Structures
    • /
    • v.16 no.5
    • /
    • pp.491-506
    • /
    • 2014
  • Buckling-restrained braces (BRBs) have excellent hysteretic behavior while buckling-restrained braced frames (BRBFs) are susceptible to residual lateral deformations. To address this drawback, a novel self-centering (SC) BRB with Basalt fiber reinforced polymer (BFRP) composite tendons is presented in this work. The configuration and mechanics of proposed BFRP-SC-BRBs are first discussed. Then an 1840-mm-long BFRP-SC-BRB specimen is fabricated and tested to verify its hysteric and self-centering performance. The tested specimen has an expected flag-shaped hysteresis character, showing a distinct self-centering tendency. During the test, the residual deformation of the specimen is only about 0.6 mm. The gap between anchorage plates and welding ends of bracing tubes performs as expected with the maximum opening value 6 mm when brace is in compression. The OpenSEES software is employed to conduct numerical analysis. Experiment results are used to validate the modeling methodology. Then the proposed numerical model is used to evaluate the influence of initial prestress, tendon diameter and core plate thickness on the performance of BFRP-SC-BRBs. Results show that both the increase of initial prestress and tendon diameters can obviously improve the self-centering effect of BFRP-SC-BRBs. With the increase of core plate thickness, the energy dissipation is improved while the residual deformation is generated when the core plate strength exceeds initial prestress force.

Evaluation of Ultimate Pressure Capacity of Light Water Reactor Containment Considering Aging of Materials (재료의 경년상태를 고려한 경수로형 격납건물의 극한내압능력 평가)

  • Lee, Sang-Kuen;Song, Young-Chul;Han, Sang-Hoon;Kwon, Yong-Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.147-154
    • /
    • 2001
  • The prestressed concrete containment is one of the most important structures in nuclear power plants, which is required to prevent release of radioactive or hazardous effluents to the environment even in the case of a severe accident. Numerical analyses are carried out by using the ABAQUS finite element program to assess the ultimate pressure capacity of the Y prestressed concrete containment with light water reactor at design criteria condition and aging condition considering varied properties of time-dependant materials respectively. From the results, it is verified that the structural capacity of the Y prestressed concrete containment building under the present, aging condition is still robust. In addition, the parameter studies for the reduction of the ultimate pressure capacity of containment building according to the degradation levels of the main structural materials are carried out. The results show that when the degradations of each materials are considered as individual and combined forms, the influence is large in the order of tendon, rebar and concrete degradation, and tendon-rebar, tendon-concrete and rebar-concrete degradation respectively.

  • PDF

A Study on the Estimation of Prestress Losses in Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 프리스트레스 손실 추정에 관한 연구)

  • Oh, Byung-Hwan;Yang, In-Hwan;Kim, Ji-Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.111-120
    • /
    • 2001
  • This paper aims at estimating instantaneous prestress losses by measuring the actual prestress forces in prestressed concrete (PSC) box girder bridges. Measurement were taken to study initial prestress losses such as friction losses and slip losses. A new strain gauge system was developed to measure strains in internal tendons. The system was installed on a total of 20 tendons in a PSC box girder bridges. The variation of prestress forces were monitored during prestressing tendon and after prestress transfer. The prestress losses are also calculated including friction losses and slip losses. The measured data were compared with the theoretical values. The result shows that the measured prestress forces agree well with the theoretical values. It is shown that prestress force of each strand in the same tendon is a bit different. This study also shows that prestress losses of continuity tendons during prestress transfer are significantly different each other, which results from the variety of buttress location and tendon profile. The present study provides realistic information on the estimation of actual prestress forces and losses in PSC box girder bridges.

  • PDF

Spline Finite Strip Shell Analysis of Prestressed Concrete Box-Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 Spline 유한대판 쉘 해석)

  • 최창근;김경호;홍현석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.18-25
    • /
    • 2001
  • Analysis of prestressed box-girder bridges using the spline finite strip method is presented. In the present study, the spline finite strip method(FSM) is modified using the non-periodic B-spline interpolation. In the analysis of the prestressed box girder bridges, each tendon force is evaluated by summation of the adjacent segment forces. Once the equivalent forces acting on the structure at the tendon points are found, they are transformed into statically equivalent forces at the adjacent node or joints. Several examples were analyzed to verify the performance of present method using the non-periodic B-spline FSM. Good agreements were obtained when compared with the previous study.

  • PDF

Experiment of Flexural Behavior of Prestressed Concrete Beams with External Tendons according to Tendon Area and Tendon Force (강선량 및 긴장력에 따른 외부 강선을 가진 PSC 보의 휨거동 실험)

  • Yoo, Sung-Won;Yang, In-Hwan;Suh, Jeong-In
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.513-521
    • /
    • 2009
  • Recently, the externally prestressed unbonded concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with external unbonded tendon is different from that of normal bonded PSC beams in that the slip of tendons at deviators and the change of tendon eccentricity occurs as external loads are applied in external unbonded PSC beams. The purpose of the present paper is therefore to evaluate the flexural behavior by performing static flexural test according to tendon area and tendon force. From experimental results, before flexural cracking, there was no difference between external members and bonded members. However, after cracking, yielding load of reinforcement, ultimate load, and the tendon stress of external members was lower than that of bonded members. For the relationship of load-tendon stress, the increasing of tendon strain was inversely proportional to the initial tendon force. However, even if the initial tendon force was large, the tendon strain with small effective stress was smaller than that with large effective stress. The concrete compressive strain was proportional to the effective stress of external tendon. From the comparison between test results and codes, the ACI-318 could not consider the effect of tendon force or effective stress, and especially the results of ACI-318 were very small, so it was very conservative. And the AASHTO 1994 could be influenced on the tendon area, initial force and effective stress, but as it was made on the basis of internal unbonded tendon, its results were much larger than the test results. For this reason, the new correct predict equation of external tendon stress will be needed.

Evaluation of Ultimate Pressure Capacity of Prestressed Concrete Containment Building Considering Aging of Materials (재료의 경년상태를 고려한 PSC격납건물의 극한내압능력 평가)

  • 이상근;송영철;권용길;한상훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.805-810
    • /
    • 2000
  • The purpose of this study is to predict long-term structural safety on the Yonggwang Unit 3 prestressed concrete containment building. The aging-related degradations of its main structural materials are investigated and the effects of the property variation of time-dependent materials on the structural behavior of containment building are also assessed through the analysis on the ultimate pressure capacity. The nonlinear finite element analyses for both the design criteria condition a the present aging condition are conducted to assess the present structural capacity of the containment building As a result, it is verified that the structural capacity of the Yonggwang Unit 3 containment building under the present aging condition is judged to be still rugged. n addition, the sensitivity of the ultimate pressrue capacity of containment building according to th degradation levels of the structural materials are assessed. Finally, it is showed that the sensitivity levels are in the order of the tendon, rebar and concrete in case of individual material degradations, and the tendon-rebar, tendon-concrete and rebar-concrete in case of coupled material degradations.

  • PDF

Tensile Force Estimation of Externally Prestressed Tendon Using SI technique Based on Differential Evolutionary Algorithm (차분 진화 알고리즘 기반의 SI기법을 이용한 외부 긴장된 텐던의 장력추정)

  • Noh, Myung-Hyun;Jang, Han-Taek;Lee, Sang-Youl;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.9-18
    • /
    • 2009
  • This paper introduces the application of DE (Differential Evolutionary) method for the estimation of tensile force of the externally prestressed tendon. The proposed technique, a SI (System Identification) method using the DE algorithm, can make global solution search possible as opposed to classical gradient-based optimization techniques. The numerical tests show that the proposed technique employing DE algorithm is a useful method which can detect the effective nominal diameters as well as estimate the exact tensile forces of the externally prestressed tendon with an estimation error less than 1% although there is no a priori information about the identification variables. In addition, the validity of the proposed technique is experimentally proved using a scale-down model test considering the serviceability state condition without and with the loss of the prestressed force. The test results prove that the technique is a feasible and effective method that can not only estimate the exact tensile forces and detect the effective nominal diameters but also inspect the damping properties of test model irrespective of the loss of the prestressed force. The 2% error of the estimated effective nominal diameter is due to the difference between the real tendon diameter with a wired section and the FE model diameter with a full-section. Finally, The accuracy and superiority of the proposed technique using the DE algorithm are verified through the comparative study with the existing theories.