• Title/Summary/Keyword: prestressed high strength concrete

Search Result 98, Processing Time 0.026 seconds

Debonding failure analysis of prestressed FRP strengthened RC beams

  • Hoque, Nusrat;Jumaat, Mohd Z.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.543-555
    • /
    • 2018
  • Fiber Reinforced Polymer (FRP), which has a high strength to weight ratio, are now regularly used for strengthening of deficient reinforced concrete (RC) structures. While various researches have been conducted on FRP strengthening, an area that still requires attention is predicting the debonding failure load of prestressed FRP strengthened RC beams. Application of prestressing increases the capacity and reduces the premature failure of the beams largely, though not entirely. Few analytical methods are available to predict the failure loads under flexure failure. With this paucity, this research proposes a method for predicting debonding failure induced by intermediate crack (IC) for prestressed FRP-strengthened beams. The method consists of a numerical study on beams retrofitted with prestressed FRP in the tension side of the beam. The method applies modified Branson moment-curvature analysis together with the global energy balance approach in combination with fracture mechanics criteria to predict failure load for complicated IC-induced failure. The numerically simulated results were compared with published experimental data and the average of theoretical to experimental debonding failure load is found to be 0.93 with a standard deviation of 0.09.

Design Concept of Beams Reinforced by Deformed Bars and Non-Prestressed Strands in Combination (비긴장강연선과 철근이 혼용된 보의 설계방안)

  • Noh, Sam-Young;Jo, Min-Joo;Kim, Jong-Sung;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.18-29
    • /
    • 2013
  • A new precast concrete (PC) beam and column connection system using non-prestressed wire strands was recently developed. The system is composed of one unit of two-storied PC-column and PC-beams with U-shaped ends. The connection part of the column and beams is reinforced by deformed bars and non-prestressed wire strands in combination for the improvement of workability. Structural performance of this system was verified by several experimental studies. The purpose of this study is developing a design concept of the beam reinforced by deformed bars and non-prestressed wire strands in combination, in terms of the cross-sectional analysis, based on the preceded experiment. A minimum and maximum reinforcement ratio and the calculation formula for the strength of flexural member reinforced by reinforcements having different yield strengths are derived based on KBC2009. Under consideration existing research results for the application of high strength reinforcement bars, the design yield strength of the non-prestressed wire strand is suggested. An example for the cross section design, satisfying the serviceability requirements, demonstrates the applicability of the design concept developed in the study.

Comparative experimental study on seismic retrofitting methods for full-scale interior reinforced concrete frame joints

  • Yang Chen;Xiaofang Song;Yingjun Gan;Chong Ren
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.385-397
    • /
    • 2023
  • This study presents an experiment and analysis to compare the seismic behavior of full-scale reinforced concrete beam-column joint strengthened by prestressed steel strips, externally bonded steel plate, and CFRP sheets. For experimental investigation, five specimens, including one joint without any retrofitting, one joint retrofitted by externally bonded steel plate, one joint retrofitted by CFRP sheets, and two joints retrofitted by prestressed steel strips, were tested under cyclic-reserve loading. The failure mode, strain response, shear deformation, hysteresis behavior, energy dissipation capacity, stiffness degradation and damage indexes of all specimens were analyzed according to experimental study. It was found that prestressed steel strips, steel plate and CFRP sheets improved shear resistance, energy dissipation capacity, stiffness degradation behavior and reduced the shear deformation of the joint core area, as well as changed the failure pattern of the specimen, which led to the failure mode changed from the combination of flexural failure of beams and shear failure of joints core to the flexural failure of beams. In addition, the beam-column joint retrofitted by steel plate exhibited a high bearing capacity, energy consumption capacity and low damage index compared with the joint strengthened by prestressed steel strip, and the prestressed steel strips reinforced joint showed a high strength, energy dissipation capacity and low shear deformation, stirrups strains and damage index compared to the CFRP reinforced joint, which indicated that the frame joints strengthened with steel plate exhibited the most excellent seismic behavior, followed by the prestressed steel strips.

A Study on the Fire Resistance Performance Concerning Types of Fire Protection Method and Load Ratio of High Strength Concrete Column Using The Wire Rope (와이어로프를 적용한 고강도 철근콘크리트 기둥의 내화공법 및 하중비에 따른 내화성능에 관한 연구)

  • Cho, Bum-Yean;Yeo, In-Hwan;Kim, Heung-Youl;Kim, Hyung-Jun;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.64-71
    • /
    • 2012
  • The fire resistance test has been conducted under the standard fire & loading conditions to evaluate fire resistance performance, according to applying to methods of the lateral confinement reinforcement by prestressed Wire Rope and fire resistance reinforcement by Fiber-Cocktail and load ratio for high strength concrete column. The test result, for 60 MPa high-strength concrete column, It was indicated that applying to the wire rope has improved axial ductility in the fire condition, and fire resistance performance has been enhanced by more than 23 %. In addition to this, in case of applying the wire rope to 60 MPa high-strength concrete column, load can be judged that about 70 % of designed load is appropriate. If the Wire Rope and Fiber-Cocktail is applied to 100 MPa high-strength concrete column, It was shown that the fire resistance performance was enhanced by 4 times as much as applying only hoops.

New technique for strengthening reinforced concrete beams with composite bonding steel plates

  • Yang, Su-hang;Cao, Shuang-yin;Gu, Rui-nan
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.735-757
    • /
    • 2015
  • Composite bonding steel plate (CBSP) is a newly developed type of structure strengthened technique applicable to the existing RC beam. This composite structure is applicable to strengthening the existing beam bearing high load. The strengthened beam consists of two layers of epoxy bonding prestressed steel plates and the RC beam sandwiched in between. The bonding enclosed and prestressed U-shaped steel jackets are applied at the beam sides. This technique is adopted in case of structures with high longitudinal reinforcing bar ratio and impracticable unloading. The prestress can be generated on the strengthening steel plates and jackets by using the CBSP technique before loading. The test results of full-scale CBSP strengthened beams show that the strength and stiffness are enhanced without reduction of their ductility. It is demonstrated that the strain hysteresis effect can be effectively overcome after prestressing on the steel plates by using such technique. The applied plates and jackets can jointly behave together with the existing beam under the action of epoxy bonding and the mechanical anchorage of the steel jackets. The simplified formulas are proposed to calculate the prestress and the ultimate capacities of strengthened beams. The accuracy of formulas was verified with the experimental results.

Development of a self-centering tension-only brace for seismic protection of frame structures

  • Chi, Pei;Guo, Tong;Peng, Yang;Cao, Dafu;Dong, Jun
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.573-582
    • /
    • 2018
  • This study develops and numerically verifies an innovative seismically resilient bracing system. The proposed self-centering tension-only brace (SC-TOB) is composed of a tensioning system to provide a self-centering response, a frictional device for energy dissipation, and a high-strength steel cable as a bracing element. It is considered to be an improvement over the traditional self-centering braces in terms of lightness, high bearing capacity, load relief, and double-elongation capacity. In this paper, the mechanics of the system are first described. Governing equations deduced from the developed analytical model to predict the behavior of the system are then provided. The results from a finite element validation confirm that the SC-TOB performs as analytically predicted. Key parameters including the activation displacement and load, the self-centering parameter, and equivalent viscous damping are investigated, and their influences on the system behavior are discussed. Finally, a design procedure considering controlled softening behavior is developed and illustrated through a design example.

Bending characteristics of Prestressed High Strength Concrete (PHC) spun pile measured using distributed optical fibre strain sensor

  • Mohamad, Hisham;Tee, Bun Pin;Chong, Mun Fai;Lee, Siew Cheng;Chaiyasarn, Krisada
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.267-278
    • /
    • 2022
  • Pre-stressed concrete circular spun piles are widely used in various infrastructure projects around the world and offer an economical deep foundation system with consistent and superior quality compared to cast in-situ and other concrete piles. Conventional methods for measuring the lateral response of piles have been limited to conventional instrumentation, such as electrical based gauges and pressure transducers. The problem with existing technology is that the sensors are not able to assist in recording the lateral stiffness changes of the pile which varies along the length depending on the distribution of the flexural moments and appearance of tensile cracks. This paper describes a full-scale bending test of a 1-m diameter spun pile of 30 m long and instrumented using advanced fibre optic distributed sensor, known as Brillouin Optical Time Domain Analysis (BOTDA). Optical fibre sensors were embedded inside the concrete during the manufacturing stage and attached on the concrete surface in order to measure the pile's full-length flexural behaviour under the prescribed serviceability and ultimate limit state. The relationship between moments-deflections and bending moments-curvatures are examined with respect to the lateral forces. Tensile cracks were measured and compared with the peak strains observed from BOTDA data which corroborated very well. By analysing the moment-curvature response of the pile, the structure can be represented by two bending stiffness parameters, namely the pre-yield (EI) and post-yield (EIcr), where the cracks reduce the stiffness property by 89%. The pile deflection profile can be attained from optical fibre data through closed-form solutions, which generally matched with the displacements recorded by Linear Voltage Displacement Transducers (LVDTs).

Experimental Study on Stress Evaluation Study on Stress Evaluation of Unbonded Tendon under Ultimate Load (극한하중상태에서 비부착 긴장재의 응력평가에 관한 실험연구)

  • 임재형;문정호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.519-524
    • /
    • 1998
  • The current study is a part of series of research about the evaluation method of the unbonded tendon stress in prestressed concrete member at flexural failure. As the experimental study, a test program with 14 beams and slabs was planed to identify the contribution of each important variable. The variables are (1) the effective prestress, (2) the concrete strength, (3) the amount of tendons (4) the amount of bonded reinforcements, (5) the loading type, (6) the span/depth ratio. It was found that the tendon stress increment decreases as the effective prestress increases. Also, the contributions of concrete strength, amount of tendons, bonded reinforcements, and loading type were observed to affect on tendon stresses. However, the tendon stress increments were minimal at high values of span/depth in contrast with the ACI Code.

  • PDF

A fracture criterion for high-strength steel structural members containing notch-shape defects

  • Toribio, J.;Ayaso, F.J.
    • Steel and Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.231-242
    • /
    • 2003
  • This paper deals with the formulation and development of fracture criteria for high-strength structural members containing surface damage in the form of notches (i.e., blunt defects). The important role of the yield strength of the material and its strain hardening capacity (evaluated by means of the constitutive law or stress-strain curve) is analysed in depth by considering the fracture performance of notched samples taken from high-strength steels with different levels of cold drawing (the most heavily drawn steel being commercial prestressing steel used in prestressed concrete). The final aim of the paper is to establish fracture-based design criteria for structural members made of steels with distinct yield strength and containing very different kinds of notch-shape surface damage.

A Study on the two span preflex composite girder bridges with LRFD (LRFD에 의한 2경간 Preflex 합성형교에 관한 연구)

  • 구민세;박영제;오석태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.95-102
    • /
    • 1999
  • Preflex beams are prestressed by the predeflection technique, which enables the use of concrete-encased high strength steel beams where deflection or cracking of concrete, or both, would otherwise be excessive. This study presents the analysis of the two span preflex composite girder bridges with Load and Resistance Factor Design(LRFD), which is most widely used design nile in the advanced states. The results show that the comparison of LRR with Allowable Stress Design(ASD) according to span length.

  • PDF