• Title/Summary/Keyword: prestressed high strength concrete

Search Result 98, Processing Time 0.028 seconds

An Cracking and Ultimate Behavior of Post-tensioned Prestressed High Strength Concrete Beams (포스트텐셔닝 공법의 프리트스레스트 고강도 빔부재의 균열 및 극한 거동)

  • Lee, Seong-Cheol;Choi, Young-Cheol;Oh, Byung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.323-326
    • /
    • 2005
  • Although many structures. with high strength concrete have been recently constructed, the flexural behavior of reinforced and prestressed concrete beams with high strength concrete is not exactly defined. This paper presents an experimental study on the flexural strength of the high strength concrete beams. Five large scale beams simply supported were tested and measured. Each beam was loaded by two symmetrical concentrated loads applied at 1.25m from the center of span. The concrete strength, the prestressed force and longitudinal tensile reinforcement ratio vary from beam to beam. From the experimental tests, the flexural strength from tests is larger than the nominal flexural strength of codes. Moreover, the initial crack-load is affected by the prestressed force and the crack width and spacing are controlled by the longitudinal tensile reinforcement ratio.

  • PDF

Design of P.C. Beam Bridge using High Strength Concrete (고강도 콘크리트를 사용한 P.C. Beam교의 설계)

  • 강상규;윤석구;이형준;정원기;이규정
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.446-449
    • /
    • 1997
  • The use of high strength concrete in the fabrication and construction of prestressed concrete beam bridges can result in the increase of girder spacings for standard shapes, as well as the increase of span lengths. The increase of girder spacings corresponds to the reduction of the required number of girders. This study shows that the use of high strength concrete make prestressed concrete beam bridges the economical alternative to any other bridge types. Also, this study has the purpose of giving aids to design of prestressed concrete beam. To achieve this purpose this study provides the plots resulting from research on relationships between the concrete strength of prestressed concrete beam, girder spacing and the number of strands in various span lengths.

  • PDF

Transfer length of 2400 MPa seven-wire 15.2 mm steel strands in high-strength pretensioned prestressed concrete beam

  • Yang, Jun-Mo;Yim, Hong-Jae;Kim, Jin-Kook
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.577-591
    • /
    • 2016
  • In this study, the transfer length of 2400 MPa, seven-wire high-strength steel strands with a 15.2 mm diameter in pretensioned prestressed concrete (PSC) beams utilizing high strength concrete over 58 MPa at prestress release was evaluated experimentally. 32 specimens, which have the variables of concrete compressive strength, concrete cover depth, and the number of PS strands, were fabricated and corresponding transfer lengths were measured. The strands were released gradually by slowly reducing the pressure in the hydraulic stressing rams. The measured results of transfer length showed that the transfer length decreased as the concrete compressive strength and concrete cover depth increased. The number of strands had a very small effect, and the effect varied with both the concrete cover depth and concrete strength. The results were compared to current design codes and transfer lengths predicted by other researchers. The comparison results showed that the current transfer length prediction models in design codes may be conservatively used for 2400 MPa high-strength strands in high-strength concrete beams exceeding 58 MPa at prestress release.

Flexural strength of prestressed concrete members with unbonded tendons

  • Lee, Deuck Hang;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.675-696
    • /
    • 2011
  • It is difficult to accurately predict the flexural strength of prestressed members with unbonded tendons, unlike that of prestressed members with bonded tendons, due to the unbonded behavior between concrete and tendon. While there have been many studies on this subject, the flexural strength of prestressed members with unbonded tendons is still not well understood, and different standards in various countries often result in different estimation results for identical members. Therefore, this paper aimed to observe existing approaches and to propose an improved model for the ultimate strength of prestressed members with unbonded tendons. Additionally, a large number of tests results on flexural strength of prestressed members with unbonded tendons were collected from previous studies, which entered into a database to verify the accuracy of the proposed model. The proposed model, compared to existing approaches, well estimated the flexural strength of prestressed members with unbonded tendons, adequately reflecting the effects of influencing factors such as the reinforced steel ratio, the loading patterns, and the concrete strength. The proposed model also provided a reasonably good estimation of the ultimate strength of over-reinforced members and high-strength concrete members.

Bond Characteristics of PS Strand around the End Zones of High Strength Pretensioned Prestressed Concrete Members (고강도 프리텐션 프리스트레스트 콘크리트 부재 단부 영역에서의 PS 강연선 부착특성 연구)

  • 김동백;김의성
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.102-107
    • /
    • 2000
  • The extensive use of pretensioned prestressed concrete in the modem construction industry, together with wider application of pretensioned components for structural purposes requires some important consideration on the adequate transfer of prestress force into the concrete, especially around the end zones of pretensioned member. The main objective of this paper is to study the effects of various important parameters on the bond characteristics of prestressing strand around the end zone of high strength pretensioned concrete members. To this end, a comprehensive experimental program has been set up. The principal test variables considered were strand diameter, concrete strength, concrete cover size. The present study provides valuable test data for the realistic and accurate determination of transfer length, which can be efficiently used for improving the design equation of transfer length in pretensioned prestressed concrete members.

  • PDF

Shear Cracking of Prestressed Girders with High Strength Concrete

  • Labib, Emad L.;Mo, Y.L.;Hsu, Thomas T.C.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.71-78
    • /
    • 2013
  • Prestressed concrete (PC) is the predominant material in highway bridge construction. The use of high-strength concrete has gained wide acceptance in the PC industry. The main target in the highway industry is to increase the durability and the life-span of bridges. Cracking of elements is one aspect which affects durability. Recently, nine 7.62 meter long PC I-beams made with different concrete strength were designed according to a simple, semi-empirical equation developed at the University of Houston (UH) (Laskar et al., ACI Journal 107(3): 330-339, 2010). The UH Method is a function of shear span-to-depth ratio (a/d), concrete strength $\sqrt{f^{\prime}_c}$, web area $b_wd$, and amount of transverse steel. Based on testing these girders, the shear cracking strength of girders with different concrete strength and different shear span-to-depth ratio was investigated and compared to the available approaches in current codes such as ACI 318-11 (2011) and AASHTO LRFD Specifications (2010).

Static behavior of stud shear connectors with initial damage in steel-UHPC composite bridges

  • Qi, Jianan;Tang, Yiqun;Cheng, Zhao;Xu, Rui;Wang, Jingquan
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.413-421
    • /
    • 2020
  • For steel-concrete girders made composite using shear studs, initial damage on studs induced by weld defect, unexpected overloading, fatigue and others might degrade the service performance and even threaten the structural safety. This paper conducted a numerical study to investigate the static behavior of damaged stud shear connectors that were embedded in ultra high performance concrete (UHPC). Parameters included damage degree and damage location. The material nonlinear behavior was characterized by multi-linear stress-strain relationship and damage plasticity model. The results indicated that the shear strength was not sensitive to the damage degree when the damage occurred at 2/3d (d is the stud diameter) from the stud root. An increased stud area would be engaged in resisting shear force as the distance of damage location from stud root increased and the failure section becomes inclined, resulting in a less reduction in the shear strength and shear stiffness. The reduction factor was proposed to consider the degradation of the shear strength of the damaged stud. The reduction factor can be calculated using two approaches: a linear relationship and a square relationship with the damage degree corresponding to the shear strength dominated by the section area and the nominal diameter of the damaged stud. It was found that the proposed method is preferred to predict the shear strength of a stud with initial damage.

Development and application of a hybrid prestressed segmental concrete girder utilizing low carbon materials

  • Yang, Jun-Mo;Kim, Jin-Kook
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.371-381
    • /
    • 2019
  • A hybrid prestressed segmental concrete (HPSC) girder utilizing low carbon materials was developed in this paper. This paper introduces the hybrid prestressing concept of pre-tensioning the center segment and assembling all segments by post-tensioning, as well as the development process of the low carbon HPSC girder. First, an optimized mix proportion of 60 MPa high strength concrete containing high volume blast furnace slag was developed, then its mechanical properties and durability characteristics were evaluated. Second, the mechanical properties of 2,400 MPa high strength prestressing strands and the transfer length characteristics in pre-tensioned prestressed concrete beams were evaluated. Third, using those low carbon materials and the hybrid prestressing concept, the HPSC girders were manufactured, and their structural performance was evaluated. A 30-m long HPSC girder for highway bridges and a 35-m long HPSC girder for railway bridges were designed, manufactured, and structurally confirmed as having sufficient strength and safety. Finally, five 35-m long HPSC girders were successfully applied to an actual railway bridge for the first time.

Effects of concrete strength on structural behavior of holed-incrementally prestressed concrete (H-IPC) girder

  • Han, Man Yop;Kim, Sung Bo;Kang, Tae Heon
    • Advances in concrete construction
    • /
    • v.3 no.2
    • /
    • pp.113-126
    • /
    • 2015
  • Holed-Incrementally Prestressed Concrete (H-IPC) girders are designed using the following new design concepts. At first, web openings reduce the self-weight of the girder, and also diffuse prestressing tendon anchorages. The reduced end anchoring forces decrease the web thickness of the end sections. Additionally, precast technology help to improve the quality of concrete and to reduce the construction period at the site. For experimentally verification, two 50 m full-scale H-IPC girders are manufactured with different concrete strength of 55 MPa and 80 MPa. The safety, stiffness, ductility, serviceability and crack development of H-IPC girder are measured and compared with each other for different strengths. Both girders show enough strength to carry live load and good stiffness to satisfy the design criteria. The experimental result shows the advantages of using high strength concrete and adopting precast girder. The test data can be used as a criterion for safety control and maintenance of the H-IPC girder.