• Title/Summary/Keyword: prestressed concrete bridges

Search Result 284, Processing Time 0.027 seconds

Fatigue performance of a new type PSC girder (신형식 PSC거더의 피로 성능)

  • Choi, Sang-Hyun;Lee, Chang-Soo;Kim, Tae-Kyun;Eui, Chul-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.965-972
    • /
    • 2011
  • Unlike metallic materials, the importance of fatigue performance of concrete has been ignored. However, it is reported that environmental effects, if it cause deterioration, may increase the risk of fatigue failure under repeated loadings. In case of railroad bridges, the risk may increase due to highly periodic, repetitive, heavier nature of train load, which runs through the fixed passage called the track. Especially, when new material or structure is implemented for a main bridge member, experimental validation should be performed to avoid damage or failure due to unexpected behavior. In this paper, the fatigue performance of an IT girder is examined via a repeated loading test. The IT girder is a new type of a prestressed concrete (PSC) girder with two prestressed H-beams in the top of the girder, which provide additional sectional capacity, and it can be applied to the span longer than 30m which is a typical limit for a usual PSC girder. To obtain the fatigue performance, a 10m IT girder specimen is designed, and a repeated load test is performed by applying the cyclic load two million times. The fatigue performance of the girder is examined according to the Japanese and the CEB-FIB design codes. The fatigue test result shows that the IT girder satisfies both design codes.

  • PDF

Optimum Design of Prestressed Concrete Girder Railway Bridge (프리스트레스트 콘크리트 거더 철도교의 최적설계)

  • Cho, Sun-Kyu;Youn, Seok-Goo;Seo, Dong-Joo;Jung, Jae-Dong;Kim, Hyun-Woo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1125-1130
    • /
    • 2004
  • The prestressed concrete girder bridges have been used widely at the domestic national road as well as highway because it is great in the functional and economical efficiency. Also it has the advantage of convenience of design and construction due to being given standard sections. However it could be easily verified that a standard section of P.S.C girder is excessive design, which has much more redundancy than is necessary against design loads. Thus, in this paper the formulation of the optimum design for PSC girder railway bridge is suggested and dominant design variables and constraints are inquired as performing the optimum design. The objective is adopted as total cost of PSC girder bridge ,and in order to effective optimum design, design variables are formulated as PSC girder section dimension and girder space as well. And constraints are formulated according to Korean railway design specification and considering construction-ability such as PS anchorage and girder space. Using the proposed optimum design system, optimum PSC girder bridge design has been performed. And from the results of analysis it is suggested to denote the optimum section which satisfies the structural safety ,and economical efficiency all together.

  • PDF

Identification of prestress-loss in PSC beams using modal information

  • Kim, Jeong-Tae;Yun, Chung-Bang;Ryu, Yeon-Sun;Cho, Hyun-Man
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.467-482
    • /
    • 2004
  • One of the uncertain damage parameters to jeopardize the safety of existing PSC bridges is the loss of the prestress force. A substantial prestress-loss can lead to severe problems in the serviceability and safety of the PSC bridges. In this paper, a nondestructive method to detect prestress-loss in beam-type PSC bridges using a few natural frequencies is presented. An analytical model is formulated to estimate changes in natural frequencies of the PSC bridges under various prestress forces. Also, an inverse-solution algorithm is proposed to detect the prestress-loss by measuring the changes in natural frequencies. The feasibility of the proposed approach is evaluated using PSC beams for which a few natural frequencies were experimentally measured for a set of prestress-loss cases. Numerical models of two-span continuous PSC beams are also examined to verify that the proposed algorithm works on more complicated cases.

Evaluation of the Load Carrying Capacity of Existing Bridges with Long Span Hollow Web Prestressed Concrete Girder by Static Load Test (정적재하시험을 통한 장경간 중공 웨브 PSC 거더교의 내하력 평가)

  • Kim, Seong-Kyum;Jang, Pan-Ki;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.97-102
    • /
    • 2018
  • Conventional PSC I type girders were adversely affected by the self - weight of concrete, anchorage, prestressing. In order to overcome this problem, PSC girder was constructed with a hollow in the web and developed a hollow web PSC type I girder which is applicable to 50 - 70m span by multistage stressing and then actually long span hollow web PSC girder bridge was constructed. In this study, the results of Static Load Test and the Finite Element Analysis of the hollow web PSC I girder bridges were compared and analyzed, and the Load Carrying Capacity and safety of PSC girder bridges were evaluated. The Static Load Test and the numerical analysis results of this bridge showed similar tendency and the behavior of the hollow web PSC I girder was well simulated. The entire girders of the bridges had sufficient Load Carrying Capacity under the live load design condition and the bridges satisfied the safety and confirmed the appropriateness of the construction.

Reduced Model of the PC Segmental Multispan Bridge Constructed by Free Cantilever Method for Investigation of Deflection and Member Force (캔틸레버공법 PC 세그멘탈 다경간 교량의 처짐 및 단면력 검토를 위한 축소모델에 관한 연구)

  • Lee, Jae Hoon;Lee, Myeong-Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.1-13
    • /
    • 1993
  • In design of prestressed concrete structures, structural analysis is performed normally several times for selection of adequate sectional dimension and tendon amount. Especially for precast segmental multi-span bridges. time consuming structural analysis process due to time dependent material properties and structural system change could be effectively reduced by use of a reduced-span bridge model. 5-span and 3-span bridges are selected as reduced-span models for the 10-span full bridge to investigate the acceptability in practical design. The analytical results of deflection, total moment, statical moment, and ultimate moment of the reduced span-models are compared with those of the 10-span full bridge. Application of the load factors to structural analysis for ultimate moment calculation in prestressed concrete is reviewed and a rational method is proposed.

  • PDF

Reduction of Prestress Loss in PSC (Prestressed Concrete) Continuous Girder by Employing Block-out Method (지점부 블록아웃 공법으로 연속화된 프리스트레스트 콘크리트 거더의 긴장력 손실 저감)

  • Shin, Kyung-Joon;Kim, Yun-Yong;Kim, Seung-Jin;Choo, Tae-Heon;Lee, Hwan-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.77-83
    • /
    • 2014
  • Prestressed concrete girder bridge has been one of the most widely used bridges in the world because of its excellent construction feasibility, economic efficiency, serviceability, and safety. In certain situations, the prestressing tendon is supposed to be bent by the construction error and the radius of curvature at the continuous joint of PSC girders, and this leads to the loss of prestressing force. However, this kind of prestress loss is not considered in the design and construction processes. This study proves that the prestress loss occurs at the continuous joint due to the local bending of tendon by the construction error or the radius of curvature. Also, a method that can reduce this type of prestress loss is proposed, and proved by the experiment. The result shows that maximum 10% of prestress loss occurs at the continuous joint and the proposed block-out method can reduce the prestress loss ratio by maximum 5%, approximately. This means that the block-out method can enhance the prestressing efficiency of continuous PSC girder bridges.

Permeability of Magnetic Flux of PS Steel for Variation of Stress and Temperature (긴장재의 응력 및 온도변화에 따른 자속투과율)

  • Park, Jin Su;Kim, Byeong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.323-331
    • /
    • 2022
  • An experimental study was conducted to investigate the effect of applied tensile force and temperature on the permeability of magnetic flux in prestressing steel. The permeability of magnetic flux is the ratio at which the magnetic flux between two points passes. The prestressing steel used in these experiments included a 7-mm PS wire mainly used for cable-stayed bridges and a 12.7-mm PS strand for prestressed concrete bridges. The experiments to extract the permeability of the magnetic flux of steel wire and strand were conducted under various tensile levels and temperature conditions. From the experimental results, it was observed that the permeability of magnetic flux of the PS tension material was linearly proportional to the applied tensile stress level, and inversely proportional to the temperature. If the experimental relationship among the magnetic permeability, temperature, and prestressing ratio of a PS tension material is known in advance, the current tension stress level on PS members can be evaluated by measuring solely the magnetic permeability and temperature.

Dynamic Performance Estimation of the Incrementally PSC Girder Railway Bridge by Modal Tests and Moving Load Analysis (다단계 긴장 PSC 거더 철도교량의 동특성 실험 및 주행열차하중 해석에 의한 동적성능 평가)

  • Kim, Sung Il;Kim, Nam Sik;Lee, Hee Up
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.707-717
    • /
    • 2006
  • As an alternative to conventional prestressed concrete (PSC) girders, various types of PSC girders are either under development or have already been applied in bridge structures. Incrementally prestressed concrete girder is one of these newly developed girders. According to the design concept, these new types of PSC girders have the advantages of requiring less self-weight while having the capability of longer spans. However, the dynamic interaction between bridge superstructures and passing trains is one of the critical issues concerning these railway bridges designed with more flexibility. Therefore, it is very important to evaluate modal parameters of newly designed bridges before doing dynamic analyses. In the present paper, a 25 meters long full scale PSC girder was fabricated as a test specimen and modal testing was carried out to evaluate modal parameters including natural frequencies and modal damping ratios at every prestressing stage. During the modal testing, a digitally controlled vibration exciter as well as an impact hammer is applied, in order to obtain precise frequency response functions and the modal parameters are evaluated varying with construction stages. Prestressed force effects on changes of modal parameters are analyzed at every incremental prestressing stage. With the application of reliable properties from modal experiments, estimation of dynamic performances of PSC girder railway bridges can be obtained from various parametric studies on dynamic behavior under the passage of moving train. Dynamic displacements, impact factor, acceleration of the slab, end rotation of the girder, and other important dynamic performance parameters are checked with various speeds of the train.

Anchorage Zone Behavior and Analysis of Precast Prestressed Concrete Box-Girder Bridges (프리캐스트 프리스트레스트 콘크리트(PC) 박스거더 교량의 정착부 거동 및 해석)

  • 오병환;임동환;이명규;백신원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.36-41
    • /
    • 1994
  • 프리캐스트 프리스트레스트 콘크리트 상자형 교량의 정착부에 프리스트레스 힘이 도입되면, 과다한 국부집중 하중으로 인하여 균열이 발행할 수 있으며, 최근 이러한 교량의 건설시 텐던을 따라가며 심각한 균열이 발생한 경우가 있다. 본 논문은 프리캐스트 프리스트레스트 콘크리트 상자형 교량의 정착부에 발생하는 국부집중 응력의 분포 특성을 규명하고, 이를 토대로 파괴기구 고찰함에 목적이 있다. 이를 위하여 정착부 파괴에 직접적인 영향을 미치는 단면의 형상, 텐던의 배치상태, 국부보강 철근의 형태 및 구조보강 철근량 등을 변수로 하는 역학적 거동 실험 및 해석 연구가 수행되었다. 위의 실험 및 해석연구결과 정착부 파괴양상이 규명되었으며, 프리스트레스 정착부의 새로운 파괴기구 개념이 제시되어, 정착부 파괴과정을 적절히 설명하고 있다.

  • PDF

A Fundamental Study to Develop the Two Span Continuous Bridge using the Partial Post-Tensioning Technique (부분포스트텐션닝 방법을 이요한 2경간 연속 교량구조의 개발을 위한 기초연구)

  • 이환우;김종수;국승규;김광양
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.797-802
    • /
    • 1997
  • The current study is a part of series o research about the development of new superstructure system to overcome the engineering problems in the design of bridges of 30m to 45m in span length using the existing bridge systems. The basic concept of new system is the continuation of adjacent tow simple spans composed of the precast prestressed concrete U-type sections. The partial post tensioning method is applied to create the continuity. In this study, the new technique was introduced and applied with an example design of tow span of 40m in span length to find the possibility for practical application as the feasibility study. The obtained results show that the new splicing method is expected to offer significant economical and serviceability advantages.

  • PDF