• Title/Summary/Keyword: prestressed composite structures

Search Result 83, Processing Time 0.02 seconds

Integration of in-situ load experiments and numerical modeling in a long-term bridge monitoring system on a newly-constructed widened section of freeway in Taiwan

  • Chiu, Yi-Tsung;Lin, Tzu-Kang;Hung, Hsiao-Hui;Sung, Yu-Chi;Chang, Kuo-Chun
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.1015-1039
    • /
    • 2014
  • The widening project on Freeway No.1 in Taiwan has a total length of roughly 14 kilometers, and includes three special bridges, namely a 216 m long-span bridge crossing the original freeway, an F-bent double decked bridge in a co-constructed section, and a steel and prestressed concrete composite bridge. This study employed in-situ monitoring in conjunction with numerical modeling to establish a real-time monitoring system for the three bridges. In order to determine the initial static and dynamic behavior of the real bridges, forced vibration experiments, in-situ static load experiments, and dynamic load experiments were first carried out on the newly-constructed bridges before they went into use. Structural models of the bridges were then established using the finite element method, and in-situ vehicle load weight, arrangement, and speed were taken into consideration when performing comparisons employing data obtained from experimental measurements. The results showed consistency between the analytical simulations and experimental data. After determining a bridge's initial state, the proposed in-situ monitoring system, which is employed in conjunction with the established finite element model, can be utilized to assess the safety of a bridge's members, providing useful reference information to bridge management agencies.

Buckling and dynamic characteristics of a laminated cylindrical panel under non-uniform thermal load

  • Bhagat, Vinod S.;Pitchaimani, Jeyaraj;Murigendrappa, S.M.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1359-1389
    • /
    • 2016
  • Buckling and free vibration behavior of a laminated cylindrical panel exposed to non-uniform thermal load is addressed in the present study. The approach comprises of three portions, in the first portion, heat transfer analysis is carried out to compute the non-uniform temperature fields, whereas second portion consists of static analysis wherein stress fields due to thermal load is obtained, and the last portion consists of buckling and prestressed modal analyzes to capture the critical buckling temperature as well as first five natural frequencies and associated mode shapes. Finite element is used to perform the numerical investigation. The detailed parametric study is carried out to analyze the effect of nature of temperature variation across the panel, laminate sequence and structural boundary constraints on the buckling and free vibration behavior. The relation between the buckling temperature of the panel under uniform temperature field and non-uniform temperature field is established using magnification factor. Among four cases considered in this study for position of heat sources, highest magnification factor is observed at the forefront curved edge of the panel where heat source is placed. It is also observed that thermal buckling strength and buckling mode shapes are highly sensitive to nature of temperature field and the effect is significant for the above-mentioned temperature field. Furthermore, it is also observed that the panel with antisymmetric laminate has better buckling strength. Free vibration frequencies and the associated mode shapes are significantly influenced by the non-uniform temperature variations.

A Study of Dynamic Behavior of Segmental U-shaped Prestressed Concrete Girder Applied with Integrated Tensioning Systems (복합긴장방식이 적용된 세그멘탈 U형 거더 동적 거동 특성 연구)

  • Hyunock Jang;Ilyoung Jang
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.369-378
    • /
    • 2024
  • Purpose: This study aims to verify structural stability by manufacturing a 40m full-scale specimen composed of a segmental U-shaped PSC girder with integrated tensioning systems and a concrete slab, proceeding dynamic behavior tests, and compare the results of the tests with the results of numerical analysis. Method: Dynamic behavior tests were conducted on a full-scale, undamaged specimen using an impact hammer, and the natural frequency and damping ratio were measured and compared with numerical analysis techniques and the general damping ratio of the facilities. Result: The natural frequency of the numerical analysis model consisting of a girder and slab composite section was calculated to be 2.561Hz, the natural frequency of the full-scale specimen was measured to be 2.670Hz, and the damping ratio was calculated to be 0.42~0.68%. Conclusion: The natural frequency of the full-scale specimen was found to be 4.3% larger than that of the numerical analysis model. Since the masses of the full-scale specimen and the numerical analysis model are the same as 99.97%, it can be derived that the stiffness of the full-scale specimen has secured structural safety and stability. As a result, the dynamic behavior stability of the specimen was verified. The measured damping ratio of 0.42~0.68% was found to be a stable dynamic behavior compared to the PSC structures damping ratio of 0.5~1.0% in the elastic region.