• Title/Summary/Keyword: pressurized thermal Shock

Search Result 54, Processing Time 0.024 seconds

Evaluation of Reference Temperature on Pressurized Thermal Shock for Domestic Pressurized Water Reactors (국내 가압경수형 원자로에 대한 가압열충격 기준온도 평가)

  • Choi, Young Hwan;Park, Jeong Soon;Jhung, Myung Jo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.42-46
    • /
    • 2010
  • The evaluation method for the failure frequency of reactor vessel under pressurized thermal shock(PTS) is developed using probabilistic fracture mechanics. The probabilistic reactor integrity evaluation code, named R-PIE code, is developed. The validity and uncertainty of the R-PIE code is investigated. The reactor failure frequencies under PTS for Kori-1 nuclear power plant and other type of domestic nuclear power plants are evaluated. The reference PTS temperature for domestic nuclear power plants is obtained for the rule making against PTS failure.

  • PDF

Probabilistic Evaluation of RV Integrity Under Pressurized Thermal Shock (가압열충격을 받는 원자로용기의 확률론적 건전성 평가)

  • Kim, Jong-min;Bae, Jae-hyun;Sohn, Gap-heon;Yoon, Ki-seok;Choi, Taek-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.90-95
    • /
    • 2004
  • The probabilistic fracture analysis is used to determine the effects of uncertainties involved in material properties, location and size of flaws, etc, which can not be addressed using a deterministic approach. In this paper the probabilistic fracture analysis is applied for evaluating the RV(Reactor Vessel) under PTS(Pressurised Thermal Shock). A semi-elliptical axial crack is assumed in the inside surface of RV. The selected random parameters are initial crack depth, neutron fluence, chemical composition of material (copper, nickel and phosphorous) and $RT_{NDT}$. The deterministically calculated $K_I$ and crack tip temperature are used for the probabilistic calculation. Using Monte Carlo simulation, the crack initiation probability for fixed flaw and PNNL(Pacific Northwest National Laboratory) flaw distribution is calculated. As the results show initiation probability of fixed flaw is much higher than that of PNNL distribution, the postulated crack sizes of 1/10t in this paper and 1/4t of ASME are evaluated to be very conservative.

  • PDF

A Study on the Integrity Evaluation Method of Subclad Crack Under Pressurized Thermal Shock (가압열충격 사고시 클래드 하부균열 안전성 평가 방법에 관한 연구)

  • Kim, Yeong-Jin;Kim, Jin-Su;Gu, Bon-Geol;Choe, Jae-Bung;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1139-1146
    • /
    • 2001
  • The reactor pressure vessel(RPV) is usually cladded with stainless steel to prevent corrosion and radiation embrittlement, and a number of subclad cracks have been found during an in-service-inspection. These subclad cracks should be assured for a safe operation under normal conditions and faulted conditions such as pressurized thermal shock(PTS). Currently available integrity assessment procedure for an RPV, ASME Code Sec. XI, are built on the basis of linear fracture mechanics (LEFM). In PTS condition, however, thermal stress and mechanical stress give rise to high tensile stress at the cladding and elastic-plastic behavior is expected in this area. Therfore, ASME Code Sec. XI is overly conservative in assessing the structural integrity under PTS condition. In this paper, the fracture parameter (stress intensity factor, K, and RT(sub)NDT) from elastic analysis using ASME Sec. XI and finite element method were validated against 3-D elastic-plastic finite element analyses. The difference between elastic and elastic-plastic analysis became significant with increasing crack depth. Therfore, it is recommended to perform elastic-plastic analysis for the accurate assessment of subclad cracks under TPS which causes plastic deformation at the cladding.

Probabilistic Fracture Analysis of Nuclear Reactor Vessel under Pressurized Thermal Shock (가압열충격을 받는 원자로의 확률론적 파괴해석)

  • 김지호;김종욱;김종인;박근배
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.309-316
    • /
    • 2004
  • A probabilistic structural integrity assessment is performed for a reactor pressure vessel under PTS(Pressurized Thermal Shock). A semi-elliptical finite axial crack is assumed to he in the beltline region(either base metal or weld meta)1 of the reactor vessel inside surface. The selected random variables are initial crack depth, neutron fluence on the vessel inside surface, copper, nickel, and phosphorus content of the vessel material, and RT/sub NDT/. The probabilities of crack initiation or vessel failure where the crack is propagated through vessel wall are calculated. The probabilities obtained with random crack size are compared to these obtained with deterministic us. Since the failure function cannot to explicitly by selected by selected random variables, Monte Carlo Simulation is applied to perform probabilistic analysis The influence of the amount of neutron fluence is also examined to assess the structural reliability for vessel life time.

  • PDF

Pressurized Thermal Shock Analyses of Reactor Pressure Vessel for Main Steam Line Break (주증기관 파단사고에 대한 원자로 용기의 가압열충격 해석)

  • 정명조;박윤원;장창희;정일석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.271-279
    • /
    • 1999
  • 본 연구에서는 국내에서 가장 취약할 것으로 예상되는 원자력 발전소에 가압열충격 사고를 유발할 수 있는 주증기관 파단사고를 가정하여 열수력 해석과 파괴역학 해석을 수행하였다. 원전수명관리연구의 일환으로 계통열수력 해석 및 혼합열유동 해석에 의하여 구한 냉각제의 온도와 압력의 이력 및 용기의 재질성분으로부터 용기의 응력확대계수와 파괴인성치를 계산하고 이들을 비교하여 균열의 진전여부를 판단하여 형상계수가 1/6인 표면균열이 견딜 수 있는 최대 기준무연성천이온도를 결정하였다.

  • PDF

Pressurized Thermal Shock Re-Evaluation Studies for Korean PWR Plant (국내 가압경수형 원전에 대한 가압열충격 재평가 연구)

  • Jung, Sung-Gyu;Kim, Hyun-Su;Jin, Tae-Eun;Jang, Chang-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.16-21
    • /
    • 2001
  • The PTS reference temperature of reactor pressure vessel for one of the Korean NPPs has been predicted to exceed the screening criteria before it reaches it's design life. To cope with this issue, a plant-specific PTS analysis had been performed in accordance with the Regulatory Guide 1.154 in 1999. As a result of that analysis, it was found that current methodology of RG. 1.154 was very conservative. The objective of this study is to examine the effects of changing various input parameters and to determine the amount of conservatism of the current PTS analysis method. To do this, based on the past PTS analysis experience, parametric study were performed for various models using modified VISA-II code. This paper discusses the analysis results and recommendations to reduce the conservatism of current analysis method.

  • PDF

Approximation Method for the Calculation of Stress Intensity Factors for the Semi-elliptical Surface Flaws on Thin-Walled Cylinder

  • Jang Chang-Heui
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.319-328
    • /
    • 2006
  • A simple approximation method for the stress intensity factor at the tip of the axial semielliptical cracks on the cylindrical vessel is developed. The approximation methods, incorporated in VINTIN (Vessel INTegrity analysis-INner flaws), utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite element analysis for internal pressure, cooldown, and pressurized thermal shock loading conditions. For these, 3-D finite-element analyses are performed to obtain the stress intensity factors for various surface cracks with t/R=0.1. The approximation solutions are within $\pm2.5%$ of the those of finite element analysis using symmetric model of one-forth of a vessel under pressure loading, and 1-3% higher under pressurized thermal shock condition. The analysis results confirm that the approximation method provides sufficiently accurate stress intensity factor values for the axial semi-elliptical flaws on the surface of the reactor pressure vessel.

THE EFFECT OF POSTULATED FLAWS ON THE STRUCTURAL INTEGRITY OF RPV DURING PTS

  • Jhung, Myung-Jo;Choi, Young-Hwan;Chang, Yoon-Suk;Kim, Jong-Wook
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.647-654
    • /
    • 2007
  • Postulation of flaws, one of the most important areas in RPV integrity assessment, significantly affects the results. In the present work, several parameters, such as orientation, underclad vs. surface cracking, crack depth and shape, etc., are postulated and parametric studies are performed to investigate the influence of the flaw parameters on the structural integrity assessment of the reactor pressure vessel during pressurized thermal shock. The influence of individual parameters describing the crack is evaluated based on sensitivity study results.