• Title/Summary/Keyword: pressurized liquid extraction

Search Result 14, Processing Time 0.037 seconds

Optimization of Extraction Conditions for Total Phenolics from Sapium japonicum Using a Pressurized Liquid Extractor

  • Kim, Mi-Bo;Park, Jae-Sung;Lim, Sang-Bin
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.996-1000
    • /
    • 2009
  • Sapium japonicum was extracted by a pressurized liquid. Operating parameters such as the type and the ratio of solvent to water, temperature, pressure, and number of extractions were investigated as the main variables that influence the extraction efficiencies of total phenolics (TP). MeOH extracted the highest level of TP as 50.4 mg GAE/g compared to 48.8 and 27.2 mg GAE/g with $H_2O$ and EtOH, respectively. $EtOH:H_2O$ (40:60, v/v) was found to be the best solvent for TP extraction as 90.3 mg GAE/g compared to 85.0 and 84.3 mg GAE/g in 40:60 and 60:40 of $MeOH:H_2O$, respectively. TP were increased with the increase of the number of extraction steps. TP content was increased by 11% as the extraction temperature was increased from 40 (97.4) to $50{\circ}C$ (108.3 mg GAE/g). The optimum extraction conditions of TP were; extraction solvent, $EtOH:H_2O$ (40:60, v/v); temperature, $50{\circ}C$; pressure, 10.2 MPa; 2 extraction steps.

Compositional differences of Bojungikgi-tang decoctions using pressurized or non-pressurized extraction methods with variable extraction times

  • Kim, Jung-Hoon;Seo, Chang-Seob;Kim, Seong-Sil;Shin, Hyeun-Kyoo
    • The Korea Journal of Herbology
    • /
    • v.28 no.4
    • /
    • pp.1-6
    • /
    • 2013
  • Objectives : In other to determine the optimal extraction conditions, the various Bojungikgi-tang (BJIGT) decoctions prepared by different pressure levels and different extraction times were compared and evaluated in terms of the extract yield and the total soluble solid content. Methods : Decoctions were prepared by the pressure levels of 0 (non-pressurized) and 1 $kgf/cm^2$ (pressurized) for 60, 120 and 180 min. The extract yield and the total soluble solids content of decoctions were measured, and the amounts of the reference compounds in decoctions were investigated by the analysis using high performance liquid chromatography. Results : The extract yield and the total soluble solid content were higher in decoctions extracted by the pressurized method than those from decoction with non-pressurized method. The patterns of yield and contents showed a proportional increase to the extraction time. In analysis of the linear regression for four reference compounds such as liquiritin, nodakenin, hesperidin, and glycyrrhizin, the good linearity with the correlation coefficient more than 0.9999 was observed. The highest contents for four reference compounds were observed at 180 min of both the pressurized method and the non-pressurized method. Conclusions : This study suggests that the pressure in extraction method and the extraction time affect the compositional constituents in BJIGT decoctions. The extraction time of 180 min could be chosen in both pressurized and non-pressurized method as optimal extraction condition.

The Influence of Pressure and Time on the Preparation of Gumiganghwal-tang Decoctions

  • Kim, Jung-Hoon;Kim, Seong-Sil;Shin, Hyeun-Kyoo;Seo, Chang-Seob
    • The Journal of Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.12-20
    • /
    • 2013
  • Objectives: This study compared Gumiganghwal-tang (GGT) decoctions produced using different pressure levels for various extraction times to determine the optimal extraction conditions through hydrogen ion concentration (pH), total soluble solids content (TSSC), extraction yield, and content of chemical compounds. Methods: Decoctions were prepared by the pressure levels of 0 or $1kgf/cm^2$ for 30-180 min. The pH and TSSC were measured, the extraction yield was calculated, and the amounts of the chemical compounds were determined using high performance liquid chromatography. Results: The higher pressure and longer extraction time decreased the pH value, while those conditions increased TSSC and extraction yield: the decoction produced in 180 min by pressurized method showed the minimum value of pH, but maximum values of TSSC and extraction yield. The chemical compounds showed higher amounts in decoctions produced by non-pressurized methods than pressurized methods and their amounts were decreased over the peak extraction time in both pressurized and non-pressurized methods. The results of regression analysis confirmed the correlative influences of the pressure and extraction time on pH, TSSC, and extraction yield. Conclusions: This study suggests that pressure and extraction time influence the compositional constituents in GGT decoctions, and the non-pressurized method for 120 min should be chosen as the optimal extraction condition for the preparation of GGT decoction.

Investigation of difference of Gwakhyangjeonggi-san decoctions produced by different pressure levels and various extraction times (전탕 압력과 전탕 시간의 차이에 따른 곽향정기산 전탕액 비교)

  • Kim, Jung-Hoon;Lee, Nari;Shin, Hyeun-Kyoo;Seo, Chang-Seob
    • Herbal Formula Science
    • /
    • v.22 no.2
    • /
    • pp.15-24
    • /
    • 2014
  • Objectives : Gwakhyangjeonggi-san (GJS) which consists of 13 herbal medicines has been used to treat gastrointestinal disorders caused by common cold. This study was performed to compare GJS decoctions produced using different pressure levels for various extraction times. Methods : Decoctions were prepared by the pressure levels of $0kgf/cm^2$ (non-pressurized) or $1kgf/cm^2$ (pressurized) for 30-180 min. The extraction yield, total soluble solid content (TSSC), and hydrogen ion concentration (pH) were measured, and the contents of the nine marker compounds were determined using high performance liquid chromatography. Results : The higher pressure and longer extraction time significantly increased TSSC value, while decreased the pH value. However, only extraction time affected the extraction yield of pressurized decoction. Variation of the amounts of chemical compounds was shown in pressurized and non-pressurized decoctions during extraction time. The result of regression analysis showed that pressure and extraction time can influence to extraction yield, TSSC, pH, and the content of chemical compounds. Conclusions : This study suggests that the pressure and extraction time can significantly affect the extraction efficiency of components from GJS decoctions.

The influences of extraction time and pressure on the chemical characteristics of Gyejibokryeong-hwan decoctions

  • Kim, Jung-Hoon;Lee, Nari;Shin, Hyeun-Kyoo;Seo, Chang-Seob
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.1-6
    • /
    • 2014
  • Objectives : This study was aimed to compare Gyejibokryeong-hwan (GBH) decoctions produced using different pressure levels for various extraction times to find the optimal extraction conditions through extraction yield, total soluble solids content (TSSC), hydrogen ion concentration (pH), and the contents of chemical compounds. Methods : Decoctions of GBH were prepared under the pressure levels of 0 or $1kgf/cm^2$ for 30-180 min using water as extraction solvent. The extraction yield, TSSC, and pH were measured, and the amounts of the chemical compounds were determined using high performance liquid chromatography-photodiode array detector. Results : The higher pressure and longer extraction time increased the values of TSSC and extraction yield, while decreased the pH value. The decoctions produced in 180 min by pressurized method and produced in 150 min by non-pressurized method showed maximum values of extraction yield and TSSC with minimum value of pH. The amounts of chemical compounds showed variations in pressurized and non-pressurized decoction during overall extraction times. The influences of pressure and extraction time on extraction yield, TSSC, pH, and the contents of chemical compounds were confirmed by regression analysis, which showed that all extraction values were significantly affected by at least one of two extraction factors, pressure and extraction time. Conclusions : This study suggests that the pressure and extraction time can significantly affect the extraction efficiency of components from GBH decoctions. However, optimal extraction conditions could not be chosen due to the variation of the amounts of chemical compounds.

Method development and initial results of testing for perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in waterproof sunscreens

  • Keawmanee, Sasipin;Boontanon, Suwanna Kitpati;Boontanon, Narin
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.127-132
    • /
    • 2015
  • Perfluorooctane sulfonate (PFOS) and Perfluorooctanoic acid (PFOA) are persistent environmental pollutants, extremely stable, and possibly adversely affect human health. They are widely used in many industries and consumer goods, including sunscreen products. These substances are stable chemicals made of long carbon chains, having both lipid- and water-repellent qualities. The research objectives are (1) to find the most effective method for the preparation of semi-liquid samples by comparing solid phase extraction (SPE) and centrifugation after Pressurized liquid extraction (PLE), and (2) to determine the contamination levels of PFOS and PFOA in waterproof sunscreen samples. All sunscreen samples were analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Sunscreen samples were purchased from domestic and international brands sold in Thailand. Special chemical properties were considered for the selection of samples, e.g., those found in waterproof, sweat resistant, water resistant, and non-stick products. Considering the factors of physical properties, e.g., operation time, chemical consumption, and recovery percentage for selecting methods to develop, the centrifugation method using 2 mL of extracted sample with the conditions of 12,000 rpm and $5^{\circ}C$ for 1 hour after PLE was chosen. The highest concentrations of PFOS and PFOA were detected at 0.0671 ng/g and 21.0644 ng/g, respectively. Even though present concentrations are found at ng/g levels, the daily use of sunscreen products is normally several grams. Therefore, a risk assessment of PFOS and PFOA contamination in sunscreen products is an important concern, and more attention needs to be paid to the long-term effects on human health.

Review on the Analytical Methods and Ambient Concentrations of Organic Nitrogenous Compounds in the Atmosphere (대기 유기질소화합물의 분석방법 및 농도)

  • Choi, Na Rae;Kim, Yong Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.120-143
    • /
    • 2018
  • The analytical methods and their ambient levels of organic nitrogenous compounds such as nitrosamines, nitramines (nitroamines), imines, amides and nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) in the atmosphere are summarized and discussed. Sampling for the analysis of organic nitrogenous compounds was mostly conducted using high volume air sampler. The direct liquid extraction (DLE) using sonification and the pressurized liquid extraction (PLE) using the accelerated solvent extraction (ASE) have been frequently employed for the extraction of organic nitrogenous compounds in the atmospheric samples. After extraction, clean-up via filtration and the solid phase extraction (SPE) and concentrations using nitrogen and rotary evaporator have been generally conducted but in some studies the clean-up and concentration steps have been omitted to prevent the loss of analyte and improve the recovery rate of the analytical procedure. Instrumental analysis was mainly carried out using gas chromatography (GC) or the high performance liquid chromatography (HPLC) coupled with the single quadrupole mass spectrometer or tandem mass spectrometer in the electron ionization (EI), positive chemical ionization (PCI) and negative chemical ionization (NCI) mode and analysis sensitivity of nitrosamines and nitramines were higher in NCI mode. Desirable sampling and analysis methods for analyzing particulate organic nitrogenous compounds are suggested.

A rapid separation of Cs, Sr and Ba using gas pressurized extraction chromatography with inductively coupled plasma-mass spectrometry

  • Sojin Jeong;Jihye Kim;Hanul Cho;Hwakyeung Jeong;Byungman Kang;Sang Ho Lim
    • Analytical Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.123-129
    • /
    • 2024
  • We present a rapid method for the determination of Cs, Sr, and Ba, heat generators found in highly active liquid wastes, by gas-pressurized extraction chromatography (GPEC) using a column containing a cation-exchange resin. GPEC is a microscale column chromatographic technique that uses a constant flow rate of solvent (0.07 mL/min) with pressurized nitrogen gas supplied through a valve. In particular, because this method uses a small sample volume (a few hundred microliters), it produces less chemical waste and allows for faster separation compared to traditional column chromatography. In this study, we evaluated the separation of Cs, Sr, and Ba using GPEC. The eluate from the column (GPEC or conventional column chromatography) was quantitatively analyzed using inductively coupled plasma-mass spectrometry to measure the column recovery and precision. The column reproducibility of the proposed GPEC system (RSDs of recoveries) ranged from 2.7 to 4.1 %, and the column recoveries for the three elements ranged from 72 to 98% when aqueous HCl was used as the eluent. The GPEC results are slightly different in efficiency and separation resolution compared to those of conventional column chromatography because of the differences in the eluent flow rate as well as the internal diameter and length of the column. However, the two methods had similar recoveries for Cs and Sr, and the precision of GPEC was improved by two-fold. Remarkably, the solvent volume required for GPEC analysis was five times lower than that of the conventional method, and the total analysis time was 11 times shorter.

Integral Antioxidative Capacity and Antimicrobial Activity of Pressurized Liquid Extracts from 40 Selected Plant Species (식물 40종 고압용매 추출물의 통합적 항산화 능력 및 항균 활성)

  • Kang, Mi-Ae;Kim, Mi-Bo;Kim, Ji-Hun;Ko, Young-Hwan;Lim, Sang-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.9
    • /
    • pp.1249-1256
    • /
    • 2010
  • Forty natural plants collected in Jeju, Jeonnam-Goheung, and Gyeongbuk-Ulleung were extracted using a pressurized liquid. Extraction yields of total soluble solids and total phenolics (TP), and integral antioxidative capacity (IAC) were measured, and antimicrobial activity was tested against Streptococcus parauberis, Streptococcus iniae, Edwardsiella tarda, and Vibrio ordalii. Jipsinnamul showed the highest content of TP (174.4 mg GAE/g), followed by Mulchamnamu (116.9), Seoeonamu (113.3), and Buknamu (108.2). Percent TP/TSS was high in Jipsinnamul (72.6%), Seoeonamu (47.3%), Mulchamnamu (46.4%), Jageumu (40.2%), and Baneulkkot (40.1%), respectively. Magamok, Nadosongipul, Buknamu, Mulchamnamu, and Seoeonamu showed 5.81, 3.96, 3.63, 3.63, and 3.34 mmol ascorbic acid equivalents/g of IAC of water-soluble substances, and Seoeonamu, Magamok, Seipijilpul, Mulchamnamu, Baneulkkot, and Seomgirincho showed 8.51, 6.57, 5.68, 3.85, 3.83, and 3.69 mmol Trolox equivalents/g of IAC of lipid-soluble substances, respectively. Only nine species such as Baneulkkot, Dokhwal, Jipsinnamul, Mulchamnamu, Nadosongipul, Seipijilpul, Seoeonamu, Seomgirincho, and Sumbadi of 40 selected plants showed the antimicrobial activity against four bacteria tested. Jipsinnamul showed the strong antimicrobial activity against S. iniae, while Dokhwal, Nadosongipul, and Sumbadi against S. parauberis and S. iniae, and Mulchamnamu, Seoeonamu, and Seipijilpul against V. ordalii.

Phytochemical analysis of Panax species: a review

  • Yang, Yuangui;Ju, Zhengcai;Yang, Yingbo;Zhang, Yanhai;Yang, Li;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.1-21
    • /
    • 2021
  • Panax species have gained numerous attentions because of their various biological effects on cardiovascular, kidney, reproductive diseases known for a long time. Recently, advanced analytical methods including thin layer chromatography, high-performance thin layer chromatography, gas chromatography, high-performance liquid chromatography, ultra-high performance liquid chromatography with tandem ultraviolet, diode array detector, evaporative light scattering detector, and mass detector, two-dimensional high-performance liquid chromatography, high speed counter-current chromatography, high speed centrifugal partition chromatography, micellar electrokinetic chromatography, high-performance anion-exchange chromatography, ambient ionization mass spectrometry, molecularly imprinted polymer, enzyme immunoassay, 1H-NMR, and infrared spectroscopy have been used to identify and evaluate chemical constituents in Panax species. Moreover, Soxhlet extraction, heat reflux extraction, ultrasonic extraction, solid phase extraction, microwave-assisted extraction, pressurized liquid extraction, enzyme-assisted extraction, acceleration solvent extraction, matrix solid phase dispersion extraction, and pulsed electric field are discussed. In this review, a total of 219 articles published from 1980 to 2018 are investigated. Panax species including P. notoginseng, P. quinquefolius, sand P. ginseng in the raw and processed forms from different parts, geographical origins, and growing times are studied. Furthermore, the potential biomarkers are screened through the previous articles. It is expected that the review can provide a fundamental for further studies.