• Title/Summary/Keyword: pressuremeter test

Search Result 54, Processing Time 0.019 seconds

An Evaluation of Allowable Bearing Capacity of Weathered Rock by Large-Scale Plate-Bearing Test and Numerical Analysis (대형평판재하시험 및 수치해석에 의한 풍화암 허용지지력 평가)

  • Hong, Seung-Hyeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.61-74
    • /
    • 2022
  • Considering that the number of cases in which a structure foundation is located on weathered rock has been increasing recently, for adequate design bearing capacity of a foundation on weathered rock, allowable bearing capacities of such foundations in geotechnical investigation reports were studied. With reference to the study results, the allowable bearing capacity of a foundation on weathered rock was approximately 400-700 kN/m2, with a large variation, and was considered a conservative value. Because the allowable bearing capacity of the foundation ground is an important index in determining the foundation type in the early design stage, it can have a significant influence on the construction cost and period according to the initial decision. Thus, in this study, six large-scale plate-bearing tests were conducted on weathered rock, and the bearing capacity and settlement characteristics were analyzed. According to the test results, the bearing capacities from the six tests exceeded 1,500 kN/m2, and it shows that the results are similar with the one of bearing capacity formula by Pressuremeter tests when compared with the various bearing capacity formula. In addition, the elastic modulus determined by the inverse calculation of the load-settlement behavior from the large-scale plate-bearing tests was appropriate for applying the elastic modulus of the Pressuremeter tests. With consideration of the large-scale plate-bearing tests in this study and other results of plate-bearing tests on weathered rock in Korea, the allowable bearing capacity of weathered rock is evaluated to be over 1,000 kN/m2. However, because the settlement of the foundation increases as the foundation size increases, the allowable bearing capacity should be restrained by the allowable settlement criteria of an upper structure. Therefore, in this study, the anticipated foundation settlements along the foundation size and the thickness of weathered rocks have been evaluated by numerical analysis, and the foundation size and ground conditions, with an allowable bearing capacity of over 1,000 kN/m2, have been proposed as a table. These findings are considered useful in determining the foundation type in the early foundation design.

Characteristics of Shear Strength and Consolidation Behavior of Soft Ground according to Stage Fill (단계성토에 따른 연약지반의 전단강도 및 압밀거동 특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.7
    • /
    • pp.17-26
    • /
    • 2020
  • The soft ground in the southwest coastal area composed of marine clay is greatly influenced by sediment composition, particle size distribution, particle shape, adsorption ions and pore water characteristics, tide and temperature. In addition, the geotechnical properties are very complex due to stress history, change in pore water, dissolution process and gas formation. In this study, the physical and mechanical properties of the soft ground were evaluated through field tests and laboratory tests to investigate the strength increase characteristics according to consolidation on the soft ground in the southwest coast. In addition, in order to understand the consolidation behavior of soft ground such as subsidence, pore water pressure, horizontal displacement of soil by embankment load, measuring instruments such as pore water pressuremeter, settlement gauge, inclinometer and differential settlement gauge was installed, and a piezocon penetration test was carried out step by step to confirm the increase in shear strength of the ground. Through this, it was confirmed that the shear strength of the ground is increased according to the stages of filling. In addition, by evaluating the properties of consolidation behavior, strength increase and consolidation prediction by empirical methods and theories were compared to analyze the characteristics of strength increase rate and consolidation behavior in consideration of regional characteristics.

A Study on the Seepage Behavior of Embankment with Weak Zone using Numerical Analysis and Model Test (취약대를 가진 모형제방의 침투거동에 관한 연구)

  • Park, Mincheol;Im, Eunsang;Lee, Seokyoung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.7
    • /
    • pp.5-13
    • /
    • 2016
  • This research is focused on the seepage behavior of embankment which had the weak zone with big permeability. The distributed TDR (Time Domain Reflectometer) and point sensors such as settlement gauge, pore water pressuremeter, vertical total stressmeter, and FDR (Frequency Domain Reflectometer) sensor were used to measure the seepage characteristics and embankment behavior. Also, the measured data were compared to the data of 2-D and 3-D numerical analysis. The dimension of model embankment was 7 m length, 5 m width and 1.5 m height, which is composed of fine-grained sands and the water level of embankment was 1.3 m height. The seepage behavior of measuring and numerical analysis were very similar, it means that the proper sensing system can monitor the real-time safety of embankment. The result by 2-D and 3-D numerical analysis showed similar saturation processing, however in case of weak zone, the phreatic lines of 2-D showed faster movement than that of 3-D analysis, and finally they converged.

Analysis of Co-relationship between Rock Mass Grade by RMR and Estimation Method of Rock Deformation Modulus by Suggested Formulas (RMR 분류에 의한 암반등급과 제안식에 의한 암반 변형계수 추정기법의 상관관계 분석)

  • Do, Jongnam;Lee, Jinkyu;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.13-26
    • /
    • 2012
  • The deformation modulus of rock masses is a very important design factor for the computation of stability of tunnels and their support systems. Several empirical formulas to estimate the deformation modulus using simple rock classification methods such as RQD or RMR are widely used because field tests to evaluate the deformation modulus are very expensive and time consuming work. However, these formulas can be depended on experiences from the characteristics of local sites in each country. So it is possible that there might be limitations to estimate appropriate deformation modulus in South Korea using the empirical formulas. Therefore, in this study, the applicability of empirical formulas was analyzed by comparing estimated value with the measured value from eight sites in South Korea. The results show that the estimated value based on the empirical formulas partially have tendency to overestimate. Especially, in case of sedimentary rocks, it was too difficult to apply to the empirical formulas because there was no relation ship between estimated value and measured value. For these reasons, additional data from many tests and accurate analyses are necessary to evaluate the estimation method for the deformation modulus considering the local characteristics of rock masses.