• Title/Summary/Keyword: pressure-settlement

Search Result 477, Processing Time 0.026 seconds

Prediction Method of Settlement Based on Field Monitoring Data for Soft Ground Under Preloading Improvement with Ramp Loading (점증 선행 하중으로 개량하는 연약지반의 계측기반 침하량 예측방법 개발)

  • Woo, Sang-Inn;Yune, Chan-Young;Baek, Seung-Kyung;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.83-91
    • /
    • 2008
  • Previous settlement prediction methods based on settlement monitoring were developed under instantaneous loading condition and have restriction to be applied to soft ground under ramp loading condition. In this study, settlement prediction method under ramp loading was developed. New settlement prediction method under ramp loading considered influence factors of consolidation settlement such as thickness of clayed layer, quantity of surcharge load and preconsolidation pressure, etc. Geometrical correction method based on hyperbolic method (1991) and correction method based on probability theory were applied to increase accuracy of settlement prediction using field monitoring data after ramp loading. Large consolidation tests for ideally controlled one dimensional consolidation under ramp loading condition were performed and the settlement behavior was predicted based on the monitoring data. New prediction method yielded good result of entire settlement behavior by using data during an early stage of ramp load. Additionally, new prediction method offered better settlement prediction which had final settlement prediction in close proximity and low RMSE(Root Mean Square Error) than previous method such as hyperbolic method did.

EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements

  • Rezaei, Amir H.;Shirzehhagh, Mojtaba;Golpasand, Mohammad R. Baghban
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.153-165
    • /
    • 2019
  • A case study of monitoring and analysis of surface settlement induced by tunneling of Tabriz metro line 2 (TML2) is presented in this paper. The TML2 single tunnel has been excavated using earth pressure balanced TBM with a cutting-wheel diameter of 9.49 m since 2015. Presented measurements of surface settlements, were collected during the construction of western part of the project (between west depot and S02 station) where the tunnel was being excavated in sand and silt, below the water table and at an average axis depth of about 16 m. Settlement readings were back-analyzed using Gaussian formula, both in longitudinal and transversal directions, in order to estimate volume loss and settlement trough width factor. In addition to settlements, face support and tail grouting pressures were monitored, providing a comprehensive description of the EPB performance. Using the gap model, volume loss prediction was carried out. Also, COB empirical method for determination of the face pressure was employed in order to compare with field monitored data. Likewise, FE simulation was used in various sections employing the code Simulia ABAQUS, to investigate the efficiency of numerical modelling for the estimating of the tunneling induced-surface settlements under such a geotechnical condition. In this regard, the main aspects of a mechanized excavation were simulated. For the studied sections, numerical simulation is not capable of reproducing the high values of in-situ-measured surface settlements, applying Mohr-Coulomb constitutive law for soil. Based on results, for the mentioned case study, the range of estimated volume loss mostly varies from 0.2% to 0.7%, having an average value of 0.45%.

Post-Cyclic Deformation Behavior of Non-Liquefied Weathered Soils (반복재하후 미액상화 풍화토 지반의 변형 거동)

  • 최연수;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.485-492
    • /
    • 2001
  • Weathered soil is one of the most representative soils in Korea. In this study, a series of cyclic triaxial tests was carried out to predict the post-cyclic deformation behavior of weathered soils in case of non-liquefaction. Excess pore pressure response during cyclic loading and volumetric strain during the dissipation of excess pore pressure were measured varying the confining pressure, relative density and cyclic stress ratio. Based on the test results, it Is found that the modified excess pore pressure ratio, excess pore pressure ratio normalized by cyclic stress ratio, is uniquely correlated with the number of cycles irrespective of confining pressure and cyclic stress ratio. Using the newly proposed MEPPR(modified excess pore pressure ratio) concept, it is possible to easily evaluate the excess pore pressure and the settlement of weathered soils due to cyclic loading by greatly reduced number of tests. It is also verified that the reconsolidation volumetric strain is independent of the way how the excess pore pressure was generated.

  • PDF

Assessment for Amount Increment of Dredged Soil using infiltrated consolidation method (침투압밀공법을 이용한 준설투기용량 산정)

  • Kwak, No-Kyung;Lee, Mu-Cheol;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1198-1209
    • /
    • 2009
  • In this study, an experimental research on the acceleration effect of dredged soil's self weight consolidation with seepage consolidation and PBD was conducted. The middle-sized consolidation equipment had been manufactured in order to investigate the acceleration of sedimentation and self-weight consolidation by PBD and a lower drainage. Seepage pressure was applied to the PBD installed in the center of the test equipment and a drainage by seepage pressure was allowed. The comparison between cases with and without PBD and seepage pressure reveals that the quantity of drained water and the amount of settlement was nearly 1.2 times to 3.68 times greater in the case with PBD and seepage. Early consolidation completion and the use of reclaimed site are expected due to the acceleration of settlement and increase of the quantity of reclamation if PBD is installed while being reclaiming using the result of the research.

  • PDF

Assessment of creep improvement of organic soil improved by stone columns

  • Kumail R. Al-Khafaji;Mohammed Y. Fattah;Makki K. Al-Recaby
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.191-203
    • /
    • 2024
  • One of the issues with clayey soils, particularly those with significant quantities of organic matter, is the creep settling problem. Clay soils can be strengthened using a variety of techniques, one of which is the use of stone columns. Prior research involved foundation loading when the soil beds were ready and confined in one-dimensional consolidation chambers. In this study, a particular methodology is used to get around the model's frictional resistance issue. Initially, specimens were prepared via static compaction, and they were then re-consolidated inside a sizable triaxial cell while under isotropic pressure. With this configuration, the confining pressure can be adjusted, the pore water pressure beneath the foundation can be measured, and the spacemen's lateral border may be freely moved. This paper's important conclusions include the observation that secondary settlement declines with area replacement ratio. Because of the composite ground's increasing stiffness, the length to diameter ratio (l/d) and the stone column to sample height ratio (Hc/Hs) both increase. The degree of improvement varies from 12.4 to 55% according to area replacement ratio and (l/d) ratio.

A Study on the Ground Improvement Effect with Grouting in Backside of Retaining Wall (흙막이 벽체 배면 그라우팅 시 지반보강 효과에 관한 연구)

  • Chu, Ickchan;Byun, Yoseph;Baek, Seungin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.77-83
    • /
    • 2012
  • Recently, excavations using propped walls were popularized in downtown due to reduced settlement of nearby structures. These excavations is induced strain to propped walls or settlement in near ground. In this study, the ground reinforcing effect was proven using NDS, which is an inorganic injection material. Injection tests were performed to compute optimum injection pressure and volume. Next, calibration chamber tests were performed by using computed injection pressure and volume, and wall behaviour was examined for overburden pressures of 50kPa and 150kPa. Ground reinforcing effect was shown when the material behind the propped wall was grouted. From test results, optimum injection pressure was 350kPa and the optimum volume was 10L considering economics. Calibration chamber test results show that after the material was grouted, the maximum settlement was reduced to 19% of the non-grouted condition. For overburden pressures of 50kPa and 150kPa behind the wall, the settlement of the wall increased by 58% and 57% when compared to the case of no overburden pressure.

A case study on an optimal analysis technique of primary measurements for safety management of fill dam (필댐의 안전관리를 위한 주요 계측 데이터의 최적 분석기법에 대한 사례 연구)

  • Jeon, Hyeoncheol;Yun, Seong-Kyu;Kim, Jiseong;Im, En-Sang;Kang, Gichun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1155-1166
    • /
    • 2021
  • In this study, statistical analysis was performed to suggest the optimal analysis techniques for the main measuring instruments of the fill dam, such as seepage, crest settlement, and porewater pressure gauge. In addition, correlation analysis with water level and rainfall data was performed. Based on the results of descriptive statistical analysis for each instrument, porewater pressure gauges could be classified into 3 groups or 2 groups through principal component analysis, In the case of the group having a high correlation with the water level instrument, the correlation between the gauges was also large. In the case of seepage instrument, the distribution showed an extremely asymmetric distribution, so for quantitative analysis, the average seepage during non-precipitation and precipitation could be estimated through decision tree analysis. In the case of the crest settlement instrument, the correlation analysis showed that the correlation between the gauges was large, but the relationship with the water level instrument did not show a significant linear relationship, so EMD analysis was performed to analyze it in more detail. It is judged that principal component analysis, decision tree analysis, and data filtering method can be applied to analyze the behavior of pore water pressure meters, seepage, and crest settlement instrument as major measurement items of fill dam.

Post-Liquefaction Induced Ground Settlement by Dissipation of Porewater Pressure under Drained Condition (지반 배수조건을 고려한 액상화 이후 과잉간극수압 소산에 따른 지반의 침하)

  • Yun, Seong-Kyu;Kim, Donghwan;Yang, Yeongchan;Kang, Gichun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.5-16
    • /
    • 2022
  • In the case of domestic seismic design, deformation of structures and ground is reviewed through undrained condition analysis and applied to design and maintenance. However, when the ground undergoes dissipation after liquefaction due to a dynamic load such as an earthquake, additional displacement occurs and greater damage occurs. Therefore, it is necessary to additionally analyze the drained conditions, It is necessary to grasp the exact ground behavior such as calculating and reviewing the amount of subsidence of the ground that has undergone the loss process after an earthquake and apply it to design and maintenance together. Therefore, in this study, numerical analysis was performed assuming undrained and drained conditions by dividing pure sandy soil into loose soil with Dr=30% and high-density soil with Dr=70%. In particular, when a dynamic load such as an earthquake is applied, considering the drained conditions of the ground, the settlement amount and the pore water pressure ratio of loose and dense ground are compared, This study focused on comparative analysis of settlement amount and pore water pressure ratio in the process of ground loss after an earthquake. As a result, the amount of subsidence during the dissipation process was 30 to 60 times greater than that of the earthquake.

Consolidation deformation of Baghmisheh marls of Tabriz, Iran

  • Jalali-Milani, Shahrokh;Asghari-Kaljahi, Ebrahim;Barzegari, Ghodrat;Hajialilue-Bonab, Masoud
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.561-577
    • /
    • 2017
  • Vast parts of the east of Tabriz city have been covered by Baghmisheh formation marls. These marls can be classified into three types based on their color as identified in yellow, green, and gray marls. Many high-rise buildings and other projects were founded and now is constructing on these marls. Baghmisheh formation marls are classified as stiff soil to very weak rock, therefore they undergo considerable consolidation settlement under foundation loads. This study presents the physical properties and consolidation behavior of these marls. According to the XRD tests, major clay minerals of marls are Illite, Kaolinite, Montmorillonite and Chloride. Uniaxial compressive strength are 100-250, 300-480 and 500-560 kPa for yellow, green and gray marls, respectively. Consolidation and creep behavior of Baghmisheh marls investigated by using of one dimensional consolidation apparatus under stress level up to 5 MPa. The results indicate that yellow marls have high compressibility, settlement and deformation modules. Green marls have an intermediate compressibility and settlement and while gray marls have low compressibility and settlement and from the foundation point of view have high stability. According to the creep test results, all types of marls have not been entered to progressive creep phase up to pressure 5 MPa.

A Study on Modeling of the Ground Reinforcement under a Pipe Joint Subjected to Differential Settlement (부등침하를 받는 매설관 기초지반 보강 모델링 연구)

  • 손준익;홍성완
    • Geotechnical Engineering
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 1991
  • This paper reports the application study of the ground reinforcement under a pipe joint. The soil-reinforcement interaction helps to minimize the stress concentration at joint. The settlement pattern and the earth pressure variation have been evaluated under the pipeline subjected to differential settlement. The pipeline is fixed at one side with the other side set free being loaded with a uniform surface loading. The problem has been studied by means of laboratory model test and flite element technique, and the analysis results are compared for both non-reinforced and reinforced cases to evaluate the effectiveness of the soil reinforcement for restraining the settlement of the pipeline.

  • PDF