• Title/Summary/Keyword: pressure transfer function

Search Result 222, Processing Time 0.022 seconds

A study of the transfer characteristics of pressure waves using two-port network analysis in exhaust system of engine (양단자 회로망 분석을 이용한 기관배기계의 압력파 전달특성에 관한 연구)

  • 이준서;유병구;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.77-84
    • /
    • 1998
  • Based on experimental analysis, the characteristics of pulsating pressure wave propagation is clarified by testing of 4-stroke gasoline engine. The pulsating pressure wave in exhaust system is generated by pulsating gas flow due to working of exhaust valve. The pulsating pressure wave is closely concerned to the loss of engine power according to back pressure and exhaust noise. It is difficult to exactly calculate pulsating pressure wave propagation in exhaust system because of nonlinear effect. Therefore, in the first step for solving these problems, this paper contains experimental model and analysis method which are applied two-port network analysis. Also, it shows coherence function, frequency response function, back pressure, and gradient of temperature in exhaust system.

  • PDF

Measurement of Heat Transfer Rates and Pressure Drops in a Solid Particle Circulating Fluidized Heat Exchanger (고체입자 순환유동층 열교환기의 열전달률 및 압력강하 측정)

  • 이금배;전용두;박상일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.817-824
    • /
    • 2000
  • The fluidized solid particles not only increase heat transfer rates but have a cleaning function eliminating contaiminated substances caused from condensate water. An experiment was performed to measure heat transfer rates and pressure drops in a fluidized heat exchanger with circulating solid particle for constant heat transfer rate. As a results, the heat transfer rate increased by 26.9~2.6%, heat transfer coefficient by 11.9~2.7%, and pressure drop by 79.1~10.9% at the gas velocity of 6.1 ~12.1 m/s and solid particle flow rate of 100~50 kg/h with the heat exchanger of H: 50 mm, $D_p=2 in,\; and\;D_{BP}$=30 mm.

  • PDF

Assessments of baroreflex sensitivity through the closed-loop feedback model between RR fluctuation and arterial blood pressure fluctuation (RR간격변동과 열합변동간의 폐루프 귀환 모델을 통한 압수용체반사감도의 평가)

  • 신건수;최석준;이명호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1643-1646
    • /
    • 1997
  • In this study, the method is proposed, which enable us to noninvasively assess baroreflex sensitivity through the closed-loop feedback modle between RR flucturarion and arterial blood pressure fluctuation. The proposed indexes of baroreflex sensitivity, BRS$_{LF}$와 BRS$_{HF}$ are calculated by the modulus (or gain) of the transfer function between fluctuatuons in blood pressure and RR interval in the LF band HF band, where the coherence is more than 0.5 to evaluate the performance of the proposed method, it is applied to various cardiovascular variability signals obtained form subjects under the submaximal ecericse on bicycle ergometner. In result it is concluded that the proposed method can noninvasively assess the baroreflex sensitivity.ty.

  • PDF

Heat Transfer Characteristics and Pressure Drop in Straight Microchannel of the Printed Circuit Heat Exchangers (직관 마이크로채널 PCHE의 열전달특성 및 압력강하)

  • Kim, Yoon-Ho;Seo, Jung-Eun;Choi, Young-Jong;Lee, Kyu-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.915-923
    • /
    • 2008
  • The performance experiments for a microchannel printed circuit heat exchanger (PCHE) of high-performance and high-efficiency on the two technologies of micro photo-etching and diffusion bonding were performed in this study. The microchannel PCHE were experimentally investigated for Reynolds number in ranges of 100 $\sim$ 700 under various flow conditions in the hot side and the cold side. The inlet temperatures of the hot side were conducted in range of $40^{\circ}C\;{\sim}\;50^{\circ}C$ while that of the cold-side were fixed at $20^{\circ}C$. In the flow pattern, the counter flow was provided 6.8% and 10 $\sim$ 15% higher average heat transfer rate and heat transfer performance than the parallel flow, respectively. The average heat transfer rate, heat transfer performance and pressure drop increases with increasing Reynolds number in all the experiment. The increasing of inlet temperature in the experiment range has not an effect on the heat transfer performance while the pressure drop decrease slightly with that of inlet temperature. The experimental correlations to the heat transfer coefficient and pressure drop factor as a function of the Reynolds number have been suggested for the microchannel PCHE.

Numerical Model Simulation of DF-CO$_2$ Transfer Chemical Laser

  • Kim, Sung-Ho;Cho, Ung-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.282-288
    • /
    • 1989
  • Theoretical analysis of DF-$CO_2$ transfer chemical laser is performed through simple kinetic model consisting of 30 chemical reactions. In this model, we calculate the power theoretically by solving the rate equations, which are related to the $D_2\;+\;F_2$ chain reaction and the DF-$CO_2$ resonance energy transfer, combined with both the gain processes and the stimulated emission processes. The calculated powers are verified with previously reported results in good agreements. The output energy rises linearly with the increase in pressure, and the duration time of output pulse show the inverse dependence on pressure. Through the detailed calculation of temperature and concentrations of reactants as a function of time, it is found that the deactivation processes of DF(v) can be neglected in low pressure, but they have to be considered in high pressure. From the parametric study for the variation on [$D_2]/[F_2$] and [$CO_2]/[D_2\;+\;F_2$] at several constant total pressure, the optimum lasing conditions are found to be in a range of 1/3 to 1 and 2 to 4, respectively.

Behavior of boiling heat transfer at coated heating surface(In the range of subatmosptheric pressure) (피복된 전열면에서의 비등특성(대기압 이하의 압력에서))

  • Moon D.Y;Oh S.C.;Yim C.S
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 1977
  • This paper describes an experimental investigation which has been carried out with distilled water with the range of heat flux and pressure covering 7,400-28,000kcal/$m^2/h$ and 0.42-1.0332kg/$cm^{2}abs$, respectively. In this experiment, Nickel coated mirror surface heater of 5 cm O.D. was used as a heating source. The conclusions summerized as follows;1. The useful correlation of the test data for the heat transfer coefficient is presented as a function of the pressure. $$a/a_{s}=c{\times}p\;0.18$$ where a is the heat transfer coefficient and $a_s$ is the heat transfer coefficient at atmospheric pressure and p is the pressure, C is constant. 2. The bubble diameter near the heating surface and rising velocity increased with the heat flux. 3. A decrease in pressure results in the decrease of the number of nucleation sites and the increase of the bubble volume. 4. Bubble rising velocity differences are incrased maximumly up to $200\%$ of that at atmopheric pressure.

  • PDF

MODELING AND SIMULATION FOR GAS PIPELINE SYSTEMS

  • Yoshida, Makoto;Kawato, Takashi;Fujita, Toshinori;Kawashima, Kenji;Kagawa, Toshiharu
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.335-339
    • /
    • 2001
  • City gas is one of the most important necessities of daily city life and social infrastructures. City gas is delivered to every user through a pipeline network. The gas pressure in the pipeline is regulated by gas regulator. In the pressure control system, characteristics of gas pipeline is as important as characteristics of regulator. There are many reports about the transfer function model of the fluid pipeline. But suitable model about the gas transmission pipeline is not known. In this paper, as the transfer function model of the gas pipeline, new model considering the heat transfer between pipe wall and gas and temperature change of gas is proposed. To evaluate this model, frequency response tests are used. As the result, the proposed model shows a better agreement when compared with the experimental result than conventional models. The results show the effectiveness of the model.

  • PDF

Dynamic characteristics of the compressor-combined condenser system (압축기 계가 결합된 응축기의 동특성)

  • Kim, Jae-Dol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.1001-1012
    • /
    • 1998
  • This paper reports the analysis of dynamic characteristics of air-cooled condenser. At first, there is an assumption that the superheated vapor flows into the condenser inlet. And in order to consider the effect of pressure change in the dynamic characteristics of the condenser the combined system of condenser and compressor was used. By using the equation of energy balance and the equation of mass balance, the basic equation for describing the dynamic characteristics of condenser can be derived. The transfer function for describing dynamic response of the condenser to flow rate change outlet can be obtained from using linearizations and Laplace transformations of the equation. From this transfer function, analytical investigation which affects the frequency responses of condenser has been made. Through this study, it became possible that the information about the dynamic characteristics of air-cooled condenser is offered. While the average heat transfer coefficient of the refrigerant side necessary for the theoretical calculation of the dynamic characteristics is given by calculation method for the tube length and pressure drop of air-cooled condenser.

Pressure Drop and Heat Transfer Characteristics of Internal Flow of the Rectangular Tube for Automobile Heat Exchanger (차량용 열교환기 사각관 내부 흐름에서 압력강하 및 열전달 특성)

  • Kang, Hie-Chan;Jun, Gil-Woong;Kim, Kwang-Il
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.489-492
    • /
    • 2006
  • The present work was performed to investigate the thermal and hydraulic characteristics of flow inside the plain and turbulator flat tubes for the automobile application. The pressure drop and heat transfer coefficient at laminar, transition and turbulent regimes were studied experimentally and numerically. The flow transition was confirmed by flow visualization and quantitative data. It is proposed equations for the friction and heat transfer coefficient in the fully developed laminar flow inside rectangular tube as function of aspect ratio.

  • PDF

An Experimental Study on Air Leakage and Heat Transfer Characteristics of a Rotary-type Heat Recovery Ventilator

  • Han, Hwa-Taik;Kim, Min-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.2
    • /
    • pp.83-88
    • /
    • 2005
  • This study investigates the air leakage and heat transfer characteristics of a commercially available rotary-type air-to-air heat exchanger with a fiber polyester matrix. Crossover leakage between the exhaust and supply air is measured using a tracer gas method for various ventilation rates and rotational speeds of the wheel. A correlation equation for the leakage is obtained by summing up pressure leakage and carryover leakage. The pressure leakage is observed to be a function of ventilation rate only, and the carryover leakage is found to be a linear function of wheel speed. The real efficiency of the heat exchanger can be obtained from its apparent efficiency by taking into account the leakage ratio. The heat recovery efficiency decreases, as the ventilation rate increases. As the wheel speed increases, however, the efficiency increases initially but reaches a constant value for the speeds over 10rpm.