• Title/Summary/Keyword: pressure transfer function

Search Result 222, Processing Time 0.025 seconds

An Analysis of the Wave Propagation of the flow-induced Elastic Stress Waves in the Layered Structure and it's 1 D.O.F. Modelling (적층구조물내의 유체유발 탄성응력파의 전파해석 및 1 자유도계 모델링)

  • Lee, J.K.;Lee, U.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.132-139
    • /
    • 1995
  • Turbulent boundary layer pressure fluctuation exerted on the surface of a structure can give rise to a elastic stress wave on the surface of the structure. The stress wave so called surface wave, will not only propagate along the surface of structure but also penerate into the structure. To reduce the transmission of stress wave into the structure the elastomer layer is usually attactched on the surface of structure. The transfer function, which is defined herein as the ratio of stress waves at the surface and bottom of the elastomer layer, is derved by use of the cylindrical coordinates system. The elastodynamics of the elastomer layer subjected to the turbulent boundary layer pressure fluctuation is represented by the simplified one degree-of-freedom model for easy prediction of the stress wave transmission as well as efficient design of the elastomer layer.

  • PDF

A Characteristics of Transient fluid flow in a Hydraulic circular pipe (유압(油壓) 관로(管路) 내(內)에서 유체(流體) 유동(流動)의 과도응답특성(過渡應答特性)에 관(關)한 이론적연구(理論的硏究))

  • Kim, H.J.;Jung, J.C.;Yoo, Y.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.829-834
    • /
    • 2000
  • This paper is primarily directed toward analyzing the transient response characteristics in hydraulic pipe lines. The exact solution to the transient response characteristics was obtained by using the complicated transfer function derived by Iberall. The discrepancy with the exact and approximate is small, so the approximate solution is adopted to the theoretical one. An equation was derived which describes the pressure times relationship Hat occurs at the end of volume terminated transmission line following a sudden pressure change at its inputs. As a result, It is found that the density has relationship about the Wave Propagation is very useful in analyzing the transient response characteristics of hydraulic pipe lines. The velocity of Pressure wave Propagation decreases as the density of fluid increased.

  • PDF

Chebyshev Filter Design for Pressure Measurement Improvement of Drone (드론의 대기압 측정 개선을 위한 Chebyshev 필터 설계)

  • Choi, Young-hwa;Han, Man-soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.256-257
    • /
    • 2017
  • Pressure sensors are usually used in the measurement of drone altitude in an indoor environment since GPS (global positioning system) signal is not available. In this paper, we propose a new method which uses the Chebyshev filter to decrease a high frequency error in the measured values of the pressure sensor. Considering performance of a drone flight controller, the filter order is limited to the $3^{rd}$ order. We explain the transfer function of the $3^{rd}$ order Chebyshev filter.

  • PDF

Experimental Study of Characteristics on Double Heat Exchange Pipe Used Separation Type Air-Conditioner (분리형 에어컨용 2중 열교환 배관 특성에 관한 실험적 연구)

  • Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.31-37
    • /
    • 2006
  • In this study, the ability for the function of double pipe inserted liquid pipe with small diameter in the gas pipe with large diameter for the circulating of liquid of high temperature and high pressure and low temperature and low pressure at the same time is presented. And in this double pipe, liquid pipe of high temperature and pressure is used to connect condenser and expansion valve and gas pipe of low temperature is used to connect evaporator and compressor. Also, when liquid refrigerant of high temperature and gas refrigerant of low temperature is circulated by reversed flow in the double pipe. The contribution of liquid gas heat exchange pipe is studied by comparison of the effect of heat transfer by temperature difference when liquid pipe and gas pipe is installed separately.

  • PDF

Thermal stress intensity factor solutions for reactor pressure vessel nozzles

  • Jeong, Si-Hwa;Chung, Kyung-Seok;Ma, Wan-Jun;Yang, Jun-Seog;Choi, Jae-Boong;Kim, Moon Ki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2188-2197
    • /
    • 2022
  • To ensure the safety margin of a reactor pressure vessel (RPV) under normal operating conditions, it is regulated through the pressure-temperature (P-T) limit curve. The stress intensity factor (SIF) obtained by the internal pressure and thermal load should be obtained through crack analysis of the nozzle corner crack in advance to generate the P-T limit curve for the nozzle. In the ASME code Section XI, Appendix G, the SIF via the internal pressure for the nozzle corner crack is expressed as a function of the cooling or heating rate, and the wall thickness, however, the SIF via the thermal load is presented as a polynomial format based on the stress linearization analysis results. Inevitably, the SIF can only be obtained through finite element (FE) analysis. In this paper, simple prediction equations of the SIF via the thermal load under, cool-down and heat-up conditions are presented. For the Korean standard nuclear power plant, three geometric variables were set and 72 cases of RPV models were made, and then the heat transfer analysis and thermal stress analysis were performed sequentially. Based on the FE results, simple engineering solutions predicting the value of thermal SIF under cool-down and heat-up conditions are suggested.

A Study on the Interior Noise Reduction of EMU by Contribution Analysis (기여도 분석에 의한 전기동차 실내소음 저감대책 연구)

  • 문경호;김재철;유원희
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.218-225
    • /
    • 1999
  • Speed-up and mass reduction of EMU(Electrical multiple unit) causes increase of interior noise. One of the best ways to reduce the interior noise is to identify noise sources. In this study, we evaluated interior noise by contribution analysis. This method is to predict the interior noise contribution of carbody by using transfer function between acceleration and sound pressure. The plan of the interior noise reduction based on the test results was also presented.

  • PDF

Prediction of the Diffusion Controlled Boundary Layer Transition with an Adaptive Grid (적응격자계를 이용한 경계층의 확산제어천이 예측)

  • Cho J. R.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.15-25
    • /
    • 2001
  • Numerical prediction of the diffusion controlled transition in a turbine gas pass is important because it can change the local heat transfer rate over a turbine blade as much as three times. In this study, the gas flow over turbine blade is simplified to the flat plate boundary layer, and an adaptive grid scheme redistributing grid points within the computation domain is proposed with a great emphasis on the construction of the grid control function. The function is sensitized to the second invariant of the mean strain tensor, its spatial gradient, and the interaction of pressure gradient and flow deformation. The transition process is assumed to be described with a κ-ε turbulence model. An elliptic solver is employed to integrate governing equations. Numerical results show that the proposed adaptive grid scheme is very effective in obtaining grid independent numerical solution with a very low grid number. It is expected that present scheme is helpful in predicting actual flow within a turbine to improve computation efficiency.

  • PDF

Stability Analysis and Control of the Electro-Hydraul System for Steering of the Unmaned Container Transporter(UCT) (무인 컨테이너 운반차량의 조향을 위한 전기-유압 시스템의 안정도 분석 및 해석)

  • 최재영;윤영진;허남;이영진;이만형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.371-374
    • /
    • 1999
  • This paper present the nonlinear control and the Lyapunov analysis of the nonlinear electro-hydraulic system for steering control of UCT. Electro-hydraulic system itself has the high nonlinearities arisen from the nonlinear characteristics of the pressure-fluid flow in valve and friction in cylinder. These nonlinearities are unmodeled terms in the transfer function. This paper presents the system modeling, analysis of stability based on the Lyapunov function and simulation of the nonlinear hydraulic servo system.

  • PDF

Prediction of Interior Noise Caused by Tire Based on Sound Intensity and Acoustic Source Quantification (공기 기인 소음 분석과 음향 인텐시티법을 이용한 타이어에 의한 실내 소음 예측)

  • Shin, Kwang-Soo;Lee, Sang-Kwon;Hwang, Sung-Uk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.315-323
    • /
    • 2013
  • Tire noise is divided into a road noise(structure-borne noise) and a pattern noise(air-borne noise). Whilst the road noise is caused by the structural vibration of the components on the transfer path from tire to car body, the pattern noise is generated by the air-pumping between tire and road. In this paper, a practical method to estimate the pattern noise inside a passenger car is proposed. The method is developed based on the sound intensity and airborne source quantification. Sound intensity is used for identifying the noise sources of tire. Airborne source quantification is used for estimating the sound pressure level generated by each noise source of a tire. In order to apply the airborne source quantification to the estimation of the sound pressure, the volume velocity of each source should be obtained. It is obtained by using metrics inverse method. The proposed method is successfully applied to the evaluation of the interior noises generated by four types of tires with different pattern each other.

Cathodic Polarization Measurements on La0.9Sr0.1MnO3 Electrode for Solid Oxide Fuel Cells

  • Lee, H.Y.;Oh, S.M.
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.153-161
    • /
    • 1993
  • Cathodic oxygen reduction kinetics on $La_{0.9}Sr_{0.1}MnO_3$ electrode have been examined at $700-900^{\circ}C$ under various oxygen partial pressures. AC impedance and current interruption techniques were employed for the determination of charge transfer resistances for electrochemical oxygen reduction. The $R_{ct}$ values obtained from two different methods were very close each other for $La_{0.9}Sr_{0.1}MnO_3$ electrode. Activation energy for the electrochemical oxygen reduction was found to be 174kJ/mol under atmospheric oxygen pressure. $R_{ct}$ measurements as a function of oxygen partial pressure indicate that the rate-determining step for the electrochemical oxygen reduction on $La_{0.9}Sr_{0.1}MnO_3$ electrode is the charge transfer process.

  • PDF