• 제목/요약/키워드: pressure tests

검색결과 3,057건 처리시간 0.026초

Shear infiltration and constant water content tests on unsaturated soils

  • Rasool, Ali Murtaza;Aziz, Mubashir
    • Geomechanics and Engineering
    • /
    • 제19권5호
    • /
    • pp.435-445
    • /
    • 2019
  • A series of element tests with different drainage conditions and strain rates were performed on compacted unsaturated non-plastic silt in unconfined conditions. Soil samples were compacted at water contents from dry to wet of optimum with the degree of saturation varying from 24 to 59.5% while maintaining the degree of compaction at 80%. The tests performed were shear infiltration tests in which specimens had constant net confining pressure, pore air pressure was kept drained and constant, just before the shear process pore water pressure was increased (and kept constant afterwards) to decrease matric suction and to start water infiltration. In constant water content tests, specimens had constant net confining pressure, pore air pressure was kept drained and constant whereas pore water pressure was kept undrained. As a result, the matric suction varied with increase in axial strain throughout the shearing process. In both cases, maximum shear strength was obtained for specimens prepared on dry side of optimum moisture content. Moreover, the gradient of stress path was not affected under different strain rates whereas the intercept of failure was changed due to the drainage conditions implied in this study.

Fluid Infiltration Effect on Breakdown Pressure in Laboratory Hydraulic Fracturing Tests

  • Diaz, Melvin B.;Jung, Sung Gyu;Lee, Gyung Won;Kim, Kwang Yeom
    • 지질공학
    • /
    • 제32권3호
    • /
    • pp.389-399
    • /
    • 2022
  • Observations on the influence of the fluid infiltration on the breakdown pressure during laboratory hydraulic fracturing tests, along with an analysis of the applicability of the breakdown pressure prediction for cylindrical samples using Quasi-static and Linear Elastic Fracture Mechanics approaches were carried out. These approaches consider fluid infiltration through the so-called radius of fluid infiltration or crack radius, a parameter that is not a material property. Two sets of tests under pressurization rate controlled and injection rate controlled tests were used to evaluate the applicability of these methods. The difficulty of the estimation of the radius of fluid infiltration was solved by back calculating this parameter from an initial set of tests, and later, the obtained relationships were used to predict breakdown pressures for a second set of tests. The results showed better predictions for the injection rate than for the pressurization rate tests, with average errors of 3.4% and 18.6%, respectively. The larger error was attributed to differences in the testing conditions for the pressurization rate tests, which had different applied vertical pressures. On the other hand, for the tests carried out under constant injection rate, the Linear Elastic Fracture Mechanics solution reported lower errors compared to the Quasi-static solution, with values of 3% and 3.8%, respectively. Moreover, a sensitivity analysis illustrated the influence of the radius of fluid penetration or crack radius and the tensile strength on the breakdown pressure, suggesting a need for a careful estimation of these values. Then, the calculation of breakdown pressure considering fluid infiltration in cylindrical samples under triaxial conditions is possible, although larger data sets are desirable to validate and derive better relations.

증기발생기 축방향 부분관통균열 전열관의 파열 압력 시험 (Burst pressure tests of axial part-through-wall steam generator tubes)

  • 이국희;김홍덕;강용석;남민우;조남철
    • 한국압력기기공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.56-63
    • /
    • 2014
  • In this research, burst tests for axial notched steam generator tubes were conducted. To measure the burst pressure of notched tubes, a burst testing system was manufactured. The tests were conducted under internal pressure at room temperature. Part-through-wall and through-wall notches which have various geometries with different depths and lengths were machined by electro-discharged-machined(EDM) method. The burst pressure decreased exponentially with increasing notch length and decreased almost linearly with increasing notch depth. A comparison of the burst pressure with existing burst pressure solutions for cracked tube show that the existing solution agree well with the test results.

원심모형실험에 의한 수직구 아칭토압 모사 (A Simulation of Arching Earth Pressure Exerted on Vertical Shafts through Centrifuge Tests)

  • 이대수;김경열;홍성연;김유석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.1073-1080
    • /
    • 2010
  • In this paper, the centrifuge model tests were conducted for the sake of measuring three dimensional arching earth pressure while two step excavation of the vertical shaft. The results of the centrifuge model tests were compared to newly suggested arching earth pressure equation proposed by Kim et al(2009) and two dimension earth pressure(Rankine). As the results, Measured arching earth pressure revealed about 35 percentages of two dimension earth pressure(Rankine) and almost same as that of newly suggested arching earth pressure equation.

  • PDF

연료전지 차량용 고압기체수소 저장용기(Type4)개발;설계검증시험 (Development of the High Pressure Hydrogen Gas Cylinder(Type4) for Fuel Cell Vehicle;Design Qualification Tests)

  • 유계형;주용선;허석봉;전상진;김종열;이중희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.193-196
    • /
    • 2007
  • We developed and tested the high pressure hydrogen gas cylinder(type4) for fuel cell vehicle. The working pressure is 350bar. We conducted material tests, production tests and design qualification tests on the developed cylinders according to modified NGV2-2000(hydrogen). The high pressure hydrogen gas cylinder met all the design qualification requirements of ANSI/CSA NGV2-2000 and acquired NGV2 certification from independent inspection agency.

  • PDF

Heat Transfer Characteristics of an Internally-Heated Annulus Cooled with R-134a Near the Critical Pressure

  • Hong, Sung-Deok;Chun, Se-Young;Kim, Se-Yun;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.403-414
    • /
    • 2004
  • An experimental study of heat transfer characteristics near the critical pressure has been performed with an internally-heated vertical annular channel cooled by R-134a fluid. Two series of tests have been completed: (a) steady-state critical heat flux (CHF) tests, and (b) heat transfer tests for pressure reduction transients through the critical pressure. In the present experimental range, the steady-state CHF decreases with increase of the system pressure for fixed inlet mass flux and subcooling. The CHF falls sharply at about 3.8 MPa and shows a trend towards converging to zero as the pressure approaches the critical point of 4.059 MPa. The CHF phenomenon near the critical pressure does not lead to an abrupt temperature rise of the heated wall, because the CHF occurs at remarkably low power levels. In the pressure reduction transients, as soon as the pressure passes below the critical pressure from the supercritical pressure, the wall temperatures rise rapidly up to very high values due to the departure from nucleate boiling. The wall temperature reaches a maximum at the saturation point of the outlet temperature, and then tends to decrease gradually.

21AFR 희박연료모듈의 저압 및 고압 연소성능시험 (Performance Test of 21AFR Lean Fuel Module at Low and High Operating Conditions)

  • 한영민;고영성;양수석;이대성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.858-863
    • /
    • 2001
  • In this paper, the test and result of flow and combustion for 21AFR lean fuel models are described. The necessity to develop the low emission combustor has been issued from the concern on the increase of green house and the destruction of ozone layer. To evaluate the flow and combustion performance of new designed 21AFR lean modules, the hydraulic tests in stereo lithographic airflows models, the low pressure combustion tests in three injectors model for weak extinction and ignition and the high pressure combustion tests in single sector for NOx, SAE and efficiency are performed. The low pressure tests reveal that the governing parameters in weak extinction and ignition at atmospheric condition are prefilmer length, swirl flow rotation direction, secondary swirl angle and flow split. As a results of combustion test at high pressure, the efficiency and smoke level are satisfied with performance targets, but EINOx of 17.8 is higher than target value of 13.1. The high pressure tests show that the main parameters influenced on NOx are primary swirl angle, swirl flow rotation direction, heatshield exit angle and liner mixing hole location.

  • PDF

21AFR 희박연료모듈의 저압 및 고압 연소성능시험 (Performance Test of 21AFR Lean Fuel Module at Low and High Operating Conditions)

  • 한영민;고영성;양수석;이대성
    • 대한기계학회논문집B
    • /
    • 제26권8호
    • /
    • pp.1132-1137
    • /
    • 2002
  • In this paper, the test results of the combustion for 2 IAFR lean fuel models are described. The need for the low emission combustor has been issued from the concern on the increase of green house and the destruction of ozone layer. To evaluate the flow and combustion performance of newly designed 21AFR lean modules, the hydraulic tests in stereolithographic airflows models, the low pressure combustion tests in three injectors model for weak extinction and ignition and the high pressure combustion tests in single sector for NOx, SAE and efficiency are performed. The low pressure tests reveal that the governing parameters in weak extinction and ignition at atmospheric condition are prefilmer length, swirl flow rotation direction, secondary swirl angle and flow split. As a result of combustion test at high pressure, the efficiency and smoke level are satisfied with performance targets, but EINOx of 17.8 is higher than target value of 13.1 The high pressure tests show that the main parameters influenced on NOx are primary swirl angle, swirl flow rotation direction, heatshield exit angle and liner mixing hole location.

연약지반상에 축조된 농업용저수지의 과잉공극수압 예측과 압밀계수의 비교 (Comparison of Coefficient of Consolidation and Prediction of Excess Pore Water Pressure of Agricultural Reservoir under Embankment on Soft Ground)

  • 이달원;김은호
    • 한국농공학회논문집
    • /
    • 제52권2호
    • /
    • pp.1-9
    • /
    • 2010
  • This study was carried out to comparison of coefficient of consolidation and the prediction of excess pore water pressure in agricultural reservoir on soft clay ground. For the purpose of verification of the proposed equation, laboratory model tests and field tests were performed and excess pore water pressure was compared to those predicted with the Terzaghi's method. The predicted excess pore water pressure according to ponding was very applicable to practice because it was close to the observed data. Also, for the comparison of coefficient of consolidation, the oedometer, constant rate of strain (CRS), and Rowe cell tests were performed. The coefficient of consolidation at the Rowe cell and CRS tests showed a greate increase than in the oedometer test. The ratio of the vertical and horizontal coefficient of consolidation showed a large difference according to various tests method and mixing ratio. Therefore, it is recommended that careful attention should be paid to predicting the required consolidation period in agricultural reservoir.

액상화 지반에 대한 1-g 모형실험과 원심모형실험의 비교 연구 (Comparison of 1-g and Centrifuge Model Tests on Liquefied Sand Grounds)

  • 김성렬;황재익;;김명모
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.97-104
    • /
    • 2006
  • The centrifuge and 1-g shaking table tests were performed simultaneously to compare the dynamic behaviors of loose sands of same geotechnical properties. The prototype soils were 10 m thick liquefiable loose sands. The geometric scaling factors were 20 for 1-g and 40 for centrifuge tests. The excess pore pressure, surface settlement, and acceleration in the soil were measured at the same locations in the 1-g and centrifuge tests. The total excess pore pressure from development to dissipation was measured. In the centrifuge test, viscous fluid was used as the pore water to eliminate the time scaling difference between dynamic time and dissipation time. In the 1-g tests, the steady state concept was applied to determine the unit weight of the model soil, and two different time scaling factors were applied for the dynamic time and the dissipationtime. It is concluded that the 1-g tests can simulate the excess pore pressure of the prototype soil if the permeability of the model soil is small enough to prevent dissipation of excess pore pressure during shaking and the dissipation time scaling factor is properly determined.

  • PDF