• Title/Summary/Keyword: pressure ratio

Search Result 5,689, Processing Time 0.037 seconds

A Study on the Effect of Filling Ratio on Sloshing Impact Pressure (적재율이 슬로싱 충격압력에 미치는 영향에 관한 연구)

  • Choi, Hu-In;Kwon, Sun-Hong;Park, Jung-Ho;Choi, Young-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.30-33
    • /
    • 2010
  • This study presents the effect of filling ratio on sloshing impact pressure. The experiment was done with three filling ratios of 20%, 70%, and 95% of the tank height. The input of the motion was regular excitation. The total number of sensors in use were 53. They were installed on tank top and tank wall. The maximum pressures and the average of one third highest impact pressures for the whole pressure sensors were investigated. The result shows clearly the location of sensors which are exposed to the high impact pressures for different filling ratios. The characteristics of the impact patterns for three filling ratios were also examined.

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa$-$\omega$ turbulence model. The flow field is observed to oscillate in the shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}-{\varepsilon}$ turbulence model. The flow field is observed to oscillate in the "shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

An Experimental Study of Supersonic Dual Coaxial Free Jet

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Lee, Byeong-Eun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2107-2115
    • /
    • 2003
  • A supersonic dual coaxial jet has been employed popularly for various industrial purposes, such as gasdynamic laser, supersonic ejector, noise control and enhancement of mixing. Detailed characteristics of supersonic dual coaxial jets issuing from an inner supersonic nozzle and outer sonic nozzles with various ejection angles are experimentally investigated. Three important parameters, such as pressure ratios of the inner and outer nozzles, and outer nozzle ejection angle, are chosen for a better understanding of jet structures in the present study. The results obtained from the present experimental study show that the Mach disk diameter becomes smaller, and the Mach disk moves toward the nozzle exit, and the length of the first shock cell decreases with the pressure ratio of the outer nozzle. It was also found that the highly underexpanded outer jet produces a new oblique shock wave, which makes jet structure much more complicated. On the other hand the outer jet ejection angle affects the structure of the inner jet structure less than the pressure ratio of the outer nozzle, relatively.

Pressure Loss in the Discharge Flow Path from a Diffuser to a wall (디퓨저에서 벽면으로의 방출유로에서의 압력손실)

  • Lee, J.;Kim, Y.I.;Kim, S.H.;Lee, D.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.517-522
    • /
    • 2001
  • The exit edges of a diffuser are smoothly rounded, and a wall is located perpendicularly to a diffuser exit. The fluid is discharged towards the radial direction of a diffuser after impinging against a wall from a diffuser. In this flow path, pressure loss coefficients have been calculated by the variables of Reynolds number at a diffuser inlet, distance between a diffuser exit and a wall, and turbulence models. As a result, it was calculated that $h/D_0$ ratio between $0.35\sim0.4$ has the minimum pressure loss coefficient regardless of Reynolds number and turbulence models. It was also found that in case of the flow with relatively high Reynolds number at a diffuser inlet, the pressure loss coefficients by RNG $k-\varepsilon$ model have a tendency to be near to those by standard $k-\varepsilon$ model at small ratio of $h/D_0$, but to those by RSM at large ratio.

  • PDF

Effect of pressure and stochiometric air ratio on flame structure and NOx emission in gas turbine dump combustor with double cone burner (이중원추형 모형연소기에서 압력과 공기비에 따른 화염 구조 및 NOx 배출특성)

  • Nam, Hyun Su;Han, Dong Sik;Kim, Gyu Bo;Jeo, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.177-179
    • /
    • 2012
  • This work presents an experimental investigation to study $NO_x$ emissions under stoichiometric air ratio and elevated pressure (2~10bar) in a High Press Combustor(HPC) equiped with double cone burner which was designed by Pusan Clean Coal Center(PC3). Exaust gas temperature and $NO_x$ emissions were measured at the end of the combustion chamber. The $OH^*$ radical concentration and $NO_x$ emission were decreased as a function of increasing ${\lambda}$ generally. On the other hand, $OH^*$ radical concentration and $NO_x$ emission increased with ${\lambda}$ pressure of the combustion chamber. $NO_x$ emissions which were governed by thermal $NO_x$, were highly increased under the elevated pressure, but slightly increased at sufficiently low fuel concentrations (${\lambda}>2.0$).

  • PDF

Pressure Drop Distributions in Rotating Channels with Turning Region and Angled Ribs (I) - Cross Rib Arrangements - (각도요철 및 곡관부를 가진 회전덕트 내 압력강하 분포 (I) - 엇갈린 요철 배열 -)

  • Kim, Kyung-Min;Park, Suk-Hwan;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.873-881
    • /
    • 2006
  • The present study investigates the pressure drop characteristics in rotating two-pass ducts. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter $(D_h)$ of 26.67mm. Rib turbulators are attached crossly in the four different arrangements on the leading and trailing surfaces of the test ducts. The ribs have a rectangular cross section of $2mm(e){\times}3mm(w)$ and an attack angle of $70^{\circ}C$. The pitch-to-rib height ratio (pie) is 7.5, and the rib height-to-hydraulic diameter ratio $(e/D_h)$ is 0.075. The results show that the highest pressure drop among each region appears in the turning region for the stationary case, but appears in the upstream region of the second pass for the rotating case. Effects of cross rib arrangements are almost the same in the first pass for the stationary and rotating cases. In the second pass, however, heat transfer and pressure drop are high for the cases with cross NN or PP type ribs in the stationary ducts. In the rotating ducts, they are high for the cases with cross NP or PP type ribs.

Pressure Drop Distributions in Rotating Channels with Turning Region and Angled Ribs (II) - Parallel Rib Arrangements - (각도요철 및 곡관부를 가진 회전덕트 내 압력강하 분포 (II) - 평행한 요철 배열 -)

  • Kim, Kyung-Min;Park, Suk-Hwan;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.882-890
    • /
    • 2006
  • The present study investigates the pressure drop characteristics in rotating two-pass ducts. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter $(D_h)$ of 26.67mm. Rib turbulators are attached parallel in the four different arrangements on the leading and trailing surfaces of the test ducts. The ribs have a rectangular cross section of $2m(e){\times}3mm(w)$ and an attack angle of $70^{\circ}C$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio $(e/D_h)$ is 0.075. The results show that the highest pressure drop among each region appears in the turning region for the stationary case, but appears in the upstream region of the second pass for the rotating case. Effects of parallel rib arrangements are almost the same in the first pass for the stationary and rotating cases. In the second pass, however, heat transfer and pressure drop are high for the cases with parallel NN or PP type ribs in the stationary ducts. In the rotating ducts, they are high for the cases with parallel NN or PN type ribs.

Effect of Boosted Intake Pressure on Stratified Combustion of a Gasoline Direct Injection Engine (가솔린 직접분사 엔진의 흡기과급이 성층화 연소에 미치는 영향)

  • 조남효;박형철;김미로
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.48-55
    • /
    • 2003
  • The effects of pressure charge on combustion stability and emissions have been analyzed using a GDI single cylinder engine. A late injection mode of stratified condition at the air-fuel ratio of 40:1 for 1200∼2400 rpm was tested while the boosted pressure ratio was increased up to 1.5:1. In-cylinder CFD analysis was also performed for better understanding of in-cylinder flow and fuel spray behavior. With a higher boosted pressure ratio the IMEP was increased greatly due to the increased engine load, and the ISFC was improved by more than 10% at all engine speeds. The regime of stable stratified combustion was extended to a higher engine speed, but the spark ignition angle had to be more advanced for stable combustion. The emissions of ISHC and ISNOx did not show a particular trend for the increased engine speed but a general trend of lower ISHC and higher ISNOx for a gasoline engine.

An Experimental Study of Underexpanded Moist Air Jet Impinging on a Flat Plate

  • Lee, D.W.;S.C. Baek;S.B. Kwon;Kim, H.D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.768-773
    • /
    • 2004
  • When a gas expands through a convergent nozzle in which the ratio of the ambient to the stagnation pressures is higher than that of the critical one, the issuing jet from the nozzle is underexpanded. If a flat plate is placed normal to the jet at a certain distance from the nozzle, a detached shock wave is formed at a region between the nozzle exit and the plate. In general, supersonic moist air jet technologies with nonequilibrium condensation are very often applied to industrial manufacturing processes. In spite of the importance in major characteristics of the supersonic moist air jets impinging to a solid body, its qualitative characteristics can not even know. In the present study, the effect of the nonequilibrium condensation on the underexpanded moist air jet impinging on a vertical flat plate is investigated experimentally. Flow visualization and impact pressure measurement are performed for various relative humidities and flat plate positions. The obtained results show the plate shock and Mach disk are dependent on the nozzle pressure ratio and the relative humidity, but for a given nozzle pressure ratio, the diameters of the plate shock and Mach disk depend on the stagnation relative humidity. The impact pressure deviation from the flow of without condensation is large, as the relative stagnation humidity increases.

  • PDF