• Title/Summary/Keyword: pressure ratio

Search Result 5,675, Processing Time 0.032 seconds

The Limit Compression Ratio of Knock Occurring by $R_{dH2}$ in the Heavy Duty Hydrogen-CNG Fueled Engine (대형 수소-천연가스 기관의 수소첨가율에 따른 노크발생 한계압축비)

  • Kim, Yong-Tae;Lee, Jong-Tai
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.84-91
    • /
    • 2006
  • A heavy duty hydrogen-natural gas fueled engine can obtain stable operation at ultra lean conditions and reduce emissions extremely. Reduction of $CO_2$ in its engine is one of the most benefit. In this study, rate of hydrogen addition($R_{dH2}$) and compression ratio($\varepsilon$) were investigated including performance of this engine. As results, it was found that phenomenon of pressure oscillation when increasing $R_{dH2}$ and $\varepsilon$, it means occurring knock. It consider that pressure oscillation was increased due to fast burning speed of hydrogen. Even if same compression ratio, pressure oscillation was remarkable increased according to increasing $R_{dH2}$. Therefore, limit compression ratio of knock occurring was reduced by increasing $R_{dH2}$.

Analysis of Pressure Drop Characteristics for the Air-Particle Flow in Powder Transport Piping System (입자수송시스템 내 공기-입자 유동장의 압력손실 특성 해석)

  • Lee, Jae-Keun;Ku, Jae-Hyun;Kwon, Soon-Hong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.20-26
    • /
    • 2002
  • This study reports the analysis of the pressure drop characteristics for the air-particle flow in powder transport piping system. The pressure drop characteristics of air-particle flow in piping system is not well understood due to the complexity of particles motion mechanism. Particles or powders suspended in air flow cause the increase of the pressure drop and affect directly the transportation efficiency. In this study, the pressure drop in powder transport piping system with straight and curved pipes is analyzed for the interactions of air flow and particle motion. The total pressure drop increases with increasing of the pipe length, the mixture ratio, and the friction factor of particles due to the increasing friction loss by air and particles in a coal piping system. For the coal powders of $74{\mu}m$ size and powder-to-air mass mixture ratio of 0.667, the total pressure drop by the consideration of powders and air flow is $30\%$ higher than that of air flow only.

Performance and Feasibility Evaluation of Straight-Type Mixing Head in High-Pressure Resin Transfer Molding Process of Carbon Fiber Reinforced Composite Material (탄소 섬유강화 복합소재의 고압 수지이송 성형공정에서 직선형 믹싱헤드의 성능 및 유용성 평가)

  • Han, Beom Jeong;Jeong, Yong Chai;Hwang, Ki Ha;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.157-165
    • /
    • 2017
  • The high-pressure resin transfer molding (HP-RTM) technology has been commercialized for fast production of fiber reinforced composite materials. The high-pressure mixing head was one of the most core component of the HP-RTM process. In this study, a mixing head was systematically designed, manufactured and evaluated. This mixing head was composed of a nozzle, a mixing chamber, a cleaning piston part, and an internal mold release part. In actual, a straight-type structure was newly designed instead of the conventional L-type structure for improving the maximum mixing pressure and mixing ratio precision. The performance of mixing head was showed maximum mixing pressure of 15.22MPa and mixing ratio precision of 0.12%. CFRP molding experiments were successfully obtained a 6~11 laminating carbon sheet using HP-RTM presses and specimen molds.

Porosity Prediction of the Coating Layer Based on Process Conditions of HVOF Thermal Spray Coating (HVOF 용사 코팅 공정 조건에 따른 코팅층의 기공도 예측)

  • Jeon, Junhyub;Seo, Namhyuk;Lee, Jong Jae;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.478-482
    • /
    • 2021
  • The effect of the process conditions of high-velocity oxygen fuel (HVOF) thermal spray coating on the porosity of the coating layer is investigated. HVOF coating layers are formed by depositing amorphous FeMoCrBC powder. Oxygen pressure varies from 126 to 146 psi and kerosene pressure from 110 to 130 psi. The Microstructural analysis confirms its porosity. Data analysis is performed using experimental data. The oxygen pressure-kerosene pressure ratio is found to be a key contributor to the porosity. An empirical model is proposed using linear regression analysis. The proposed model is then validated using additional test data. We confirm that the oxygen pressure-kerosene pressure ratio exponentially increases porosity. We present a porosity prediction model relationship for the oxygen pressure-kerosene pressure ratio.

Experimental Investigation on the Performance of a Cavitating Venturi According to Upstream and Back Pressure Variation (전단압과 배압 변화에 따른 캐비테이션 벤츄리 성능의 실험적 연구)

  • Ahn, Hyun Jong;Kang, Yun Hyeong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.12-19
    • /
    • 2021
  • An experimental study was performed for a cavitating venturi supplying a constant rate of flow independent of downstream pressure fluctuations when providing liquid propellant. The venturi was designed and manufactured in order to figure out the performance of the cavitating venturi. Effects of the rear-end shape, upstream pressure, and back pressure on the ratio of downstream to upstream pressure of the venturi as well as the flow-rate were observed. As a result, critical pressure ratio of the venturi, which generally depends only on the configuration of the venturi, was kept at 0.74 regardless of the rear-end shape and the upstream pressure of the venturi.

Performance Characteristics of GCH4-LOx Small Rocket Engine According to the Equivalence Ratio Variation at a Constant Pressure of Combustion Chamber (동일한 연소실 압력에서의 당량비 변화에 따른 기체메탄-액체산소 소형로켓엔진의 성능특성)

  • Yun Hyeong Kang;Hyun Jong Ahn;Chang Han Bae;Jeong Soo Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.34-42
    • /
    • 2022
  • A correlation between propellant supply condition and chamber pressure in GCH4-LOx small rocket engine was explored and hot-firing tests were conducted to analyze the engine performance characteristics according to the equivalence ratio variation at a constant chamber pressure. Correlation studies have shown that chamber pressure is linearly proportional to oxidizer supply pressure. As a result of the test, the thrust, specific impulse and characteristic velocity that are the main performance parameters of a rocket engine, were found to be enhanced as the equivalence ratio starting from a fuel-lean condition approached the stoichiometric ratio, but the efficiencies of characteristic velocity and specific impulse were on the contrary, in their dependency on the equivalence ratio.

A study on Contact Pressure Measurement of SM45C/STS410 Materials by Means of Ultrasonic Waves (초음파에 의한 SM45C/STS410재의 접촉압력측정에 관한 연구)

  • Yi, W.;Yun, I.S.;Jeong, E.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.92-99
    • /
    • 1996
  • The contact pressure in jointed plates was measured by means of an improved ultrasonic technique. In order to get calibration curve, the relationship between contact pressure and ratio of boundary and bottom echo of normal beam probes were obtained for the calibration blocks with various surface roughness. The ratio of boundary and bottom echoes were measured for the upper/under plates locally compressed with uniform pressure, and the distribution of contact pressure was obtaines. The measured pressure has a good agreement with results of FEM analysis. Thus the proposed ultrasonic method in this work is very useful to measure the contact pressure.

  • PDF

Experimental study of compression waves propagating into two-continuous tunnels (두 연속 터널을 전파하는 압축파의 실험적 연구)

  • Kim, Hui-Dong;Heo, Nam-Geon;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1294-1302
    • /
    • 1997
  • For the purpose of investigating the impulsive noise at the exit of high-speed railway tunnel and the pressure transients inside the tunnel, experiments were carried out using a shock tube with an open end. A great deal of experimental data were obtained and explored to analyze the peak pressures and maximum pressure gradients in the pressure waves. The effects of the distance and cross-sectional area ratio between two-continuous tunnels on the characteristics of the pressure waves were investigated. The peak pressure inside the second tunnel decreases for the distance and cross-sectional area ratio between two tunnels to increase. Also the peak pressure and maximum pressure gradient of the pressure wave inside the second tunnel increase as the maximum pressure gradient of initial compression wave increases.

The Effects of Inspiratory Pause on Airway Pressure and Gas Exchange under Same I:E ratio in Volume-controlled Ventilation (Volume-Controlled Mode의 기계환기시 동일환 I:E Ratio하에서 Inspiratory Pause가 기도압 몇 가스교환에 미치는 영향)

  • Choi, Won-Jun;Jung, Sung-Han;Lee, Jeong-A;Choe, Kang-Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.5
    • /
    • pp.1022-1030
    • /
    • 1998
  • Background : In volume-controlled ventilation, the use of inspiratory pause increases the inspiratory time and thus increases mean airway pressure and improves ventilation. But under the same I : E ratio, the effects of inspiratory pause on mean airway pressure and gas exchange are not certain. Moreover, the effects may be different according to the resistance of respiratory system. So we studied the effects of inspiratory pause on airway pressure and gas exchange under the same I : E ratio in volume-controlled ventilation. Methods: Airway pressure and arterial blood gases were evaluated in 12 patients under volume-controlled mechanical ventilation with and without inspiratory pause time 5%. The I : E ratio of 1 : 3, $FiO_2$, tidal volume, respiratory rate, and PEEP were kept constant. Results: $PaCO_2$ with inspiratory pause was lower than without inspiratory pause ($38.6{\pm}7.4$ mmHg vs. $41.0{\pm}7.7$ mmHg. p<0.01). P(A-a)$O_2$ was not different between ventilation with and without inspiratory pause $185.3{\pm}86.5$ mmHg vs. $184.9{\pm}84.9$ mmHg, p=0.766). Mean airway pressure with inspiratory pause was higher than without inspiratory pause ($9.7{\pm}4.0\;cmH_2O$ vs. $8.8{\pm}4.0\;cmH_2O$, p<0.01). The resistance of respiratory system inversely correlated with the pressure difference between plateau pressure with pause and peak inspiratory pressure without pause (r=-0.777, p<0.l), but positively correlated with the pressure difference between peak inspiratory pressure with pause and peak inspiratory pressure without pause (r=0.811, p<0.01). Thus the amount of increase in mean airway pressure with pause positively correlated with the resistance of respiratory system (r=0.681, p<0.05). However, the change of mean airway pressure did not correlated with the change of $PaCO_2$. Conclusion: In volume-controlled ventilation under the same I : E ratio of 1 : 3, inspiratory pause time of 5% increases mean airway pressure and improves ventilation. Although the higher resistance of respiratory system, the more increased mean airway pressure, the increase in mean airway pressure did not correlated with the change in $PaCO_2$.

  • PDF

Investigation on the responses of offshore monopile in marine soft clay under cyclic lateral load

  • Fen Li;Xinyue Zhu;Zhiyuan Zhu;Jichao Lei;Dan Hu
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.383-393
    • /
    • 2024
  • Monopile foundations of offshore wind turbines embedded in soft clay are subjected to the long-term cyclic lateral loads induced by winds, currents, and waves, the vibration of monopile leads to the accumulation of pore pressure and cyclic strains in the soil in its vicinity, which poses a threat to the safety operation of monopile. The researchers mainly focused on the hysteretic stress-strain relationship of soft clay and kinds of stiffness degradation models have been adopted, which may consume considerable computing resources and is not applicable for the long-term bearing performance analysis of monopile. In this study, a modified cyclic stiffness degradation model considering the effect of plastic strain and pore pressure change has been proposed and validated by comparing with the triaxial test results. Subsequently, the effects of cyclic load ratio, pile aspect ratio, number of load cycles, and length to embedded depth ratio on the accumulated rotation angle and pore pressure are presented. The results indicate the number of load cycles can significantly affect the accumulated rotation angle of monopile, whereas the accumulated pore pressure distribution along the pile merely changes with pile diameter, embedded length, and the number of load cycles, the stiffness of monopile can be significantly weakened by decreasing the embedded depth ratio L/H of monopile. The stiffness degradation of soil is more significant in the passive earth pressure zone, in which soil liquefaction is likely to occur. Furthermore, the suitability of the "accumulated rotation angle" and "accumulated pore pressure" design criteria for determining the required cyclic load ratio are discussed.