• Title/Summary/Keyword: pressure modes

Search Result 470, Processing Time 0.029 seconds

Effect of the Vibration Modes on the Radiation Sound for Plate (강판의 진동모드를 고려한 방사음 예측에 관한 연구)

  • Kim Chang-Nam;Byun Young-Su;Kim Jeong-Man;Kim Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • In order to compute the radiated sound from a vibrating structure, the Rayleigh's integral equation has to be derived from the Helmholtz equation using Green's function. Generally, the surface velocity in the Rayleigh's integral equation uses the root mean square(rms) velocity. The calculation value is too large, because it's not considered cancelation. On the other hand. using the complex velocity, the sound pressure is calculated too small, because it considers that sound is perfectly canceled out. Therefore, this thesis proposes a correction factor(CF) which considers vibration modes and the method by which to calculate the radiating sound pressure. The theoretical results are compared with the experimental values, and the proposed method can be verified with confluence.

An Experimental Study of Radiated So from Elastic Thin Plate in a Turbulent Boundary Layer (난류 유동장 내에 놓인 탄성을 갖는 박판의 방사소음에 대한 실험적 연구)

  • Lee, Seung-Bae;Gwon, O-Seop;Lee, Chang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1327-1336
    • /
    • 2001
  • The structural modes driven by the low wave-number components of smooth elastic wall pressure provide a relatively weak coupling between the flow and the wall motion. If the elastic thin plate has any resonant mode whose wave-number of resonance coincides with $\omega$/U$\sub$c/, the power will be transmitted to those modes of vibration by the flows. We examine the problem in which the elastic thin plate is subject to pressure fluctuations under turbulent boundary layer. Measurements are presented of the frequency spectra of the near- and far-field pressures and radiated sound contributed by the various wave modes of the thin elastic plate. Dispersion equation for wave motions of elastic plate is used to investigate the effect of bending waves of relatively low wave number on radiated sound. The low wave-number motion of elastic plate is observed to have much less influence on the low-frequency energy of wall pressure fluctuations than that of the rediated sound. High amplitude events of the wall pressure are observed to weakly couple with high-frequency energy of radiated sound for case of low tension applied to the plate. The sound source localization is applied to the measurement of radiated sound by using acoustic mirror system.

Earth Pressure Distribution with Rigid Retaining Wall Movements (강성토유벽의 움직임에 따른 토압분포)

  • 강병희;채승호
    • Geotechnical Engineering
    • /
    • v.5 no.1
    • /
    • pp.47-60
    • /
    • 1989
  • Lateral earth Pressure distributions due to the ,randy soil backfill behind the rigid vertical walls for three different wall movement modes are obtained by the elasto-plastic finite element analys of soil deformation, and these earth pressures are compared with both Rankine's and Dubrova's active earth pressures. Thereby, the effects of the magnitude and the mode of wall displacement on the earth pressure distribution are investigated. Three different modes of wall movement considered in this study are the rotation about bottom, the rotation about top and the translation. For the case of the wall rotation about top, the earth pressure distribution is shown as a reverse S-curve-shaped distribution due to the arching effect. Consequently, the point of application of the lateral thrust is much higher than one-third of the wall height from the base. And, comparing the other modes of wall movement, the magnitude and the point of appliestion of the lateral thrust for the wall rotation about top are larger and higher, respectively. The wedge-shaped plastic zone in the backfill at active failure is developed only for the mode of wall rotation about bottom. The lateral earth pressure distributions on the walls with inclined backfill of several different slopes are shown for the mode of wall rotation about bottom.

  • PDF

Three-Dimensional Numerical Analysis for Detonation Propagating in Circular Tube

  • Sugiyama, Yuta;Matsuo, Akiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.364-370
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable and unstable pitch modes for the lower and higher activation energies, respectively. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of two modes. The maximum pressure history in the stable pitch remained nearly constant, and the single Mach leg existing on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the unstable pitch due to the generation and decay of complex Mach interaction on the shock front shape. The high frequency oscillation was self-induced because the intensity of the transverse wave was changed during propagation in one cycle. The high frequency behavior was not always the same for each cycle, and therefore the low frequency oscillation was also induced in the pressure history.

  • PDF

Stabilization of Solid Waste in Lysimeter by Air Injection Mode (공기주입 방식을 이용한 매립모형조내 폐기물 안정화)

  • Kim, Kyung;Park, Joon-Seok;Lee, Hwan;Lee, Cheol-Hyo;Kim, Joung-Dae
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • This study was conducted to evaluate air injection mode on stabilization of solid waste in lysimeter. For three lysimeters, one was maintained under anaerobic condition as control, and air was injected into two lysimeters in continuous mode (atmospheric pressure) and intermittent mode (high pressure of 2 bar). Distilled water was sprayed over solid waste in 1.4 l/$m^3$(solid waste)/day, supposing rainfall intensity of 1,200 mm/yr and 30% infiltration. Oxygen in landfill gas was not detected in control lysimeter during operational days. After 30 day-aeration, oxygen concentrations of continuous and intermittent modes were maintained in 14% and 6%, respectively. $COD_{Cr}$ removal efficiencies of continuous and intermittent modes were about 70% and 50%, and BOD5 removal efficiencies were about 80% and 20%, respectively. In view of oxygen supply, and $COD_{Cr}$ and $BOD_5$ removal, continuous air injection mode of atmospheric pressure was more effective than intermittent mode of 2 bar. Settling degree of solid waste in case of two air injection modes was 3 times higher than that of anaerobic condition as control. Considering the above results, it was thought that air injection (especially continuous atmospheric pressure) could improve degradation of solid waste and induce preliminary stabilization in landfill site.

Novel SAW-based pressure sensor on $41^{\circ}YX\;LiNbO_3$ ($41^{\circ}YX\;LiNbO_3$ 기반 SAW 압력센서 개발)

  • Wang, Wen;Lee, Kee-Keun;Hwang, Jung-Soo;Kim, Gen-Young;Yang, Sang-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.33-40
    • /
    • 2006
  • This paper presents a novel surface acoustic wave (SAW)-based pressure sensor, which is composed of single phase unidirectional transducer (SPUDT), three reflectors, and a deep etched substrate for bonding underneath the diaphragm. Using the coupling of modes (COM) theory, the SAW device was simulated, and the optimized design parameters were extracted. Finite Element Methods (FEM) was utilized to calculate the bending and stress/strain distribution on the diaphragm under a given pressure. Using extracted optimal design parameters, a 440 MHz reflective delay line on 41o YX LiNbO3 was developed. High S/N ratio, shan reflection peaks, and small spurious peaks were observed. The measured S11 results showed a good agreement with simulated results obtained from coupling-of-modes (COM) modeling and Finite Element Method (FEM) analysis.

Feedback Flow Control Using Artificial Neural Network for Pressure Drag Reduction on the NACA0015 Airfoil (NACA0015 익형의 압력항력 감소를 위한 인공신경망 기반의 피드백 유동 제어)

  • Baek, Ji-Hye;Park, Soo-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.729-738
    • /
    • 2021
  • Feedback flow control using an artificial neural network was numerically investigated for NACA0015 Airfoil to suppress flow separation on an airfoil. In order to achieve goal of flow control which is aimed to reduce the size of separation on the airfoil, Blowing&Suction actuator was implemented near the separation point. In the system modeling step, the proper orthogonal decomposition was applied to the pressure field. Then, some POD modes that are necessary for flow control are extracted to analyze the unsteady characteristics. NARX neural network based on decomposed modes are trained to represent the flow dynamics and finally operated in the feedback control loop. Predicted control signal was numerically applied on CFD simulation so that control effect was analyzed through comparing the characteristic of aerodynamic force and spatial modes depending on the presence of the control. The feedback control showed effectiveness in pressure drag reduction up to 29%. Numerical results confirm that the effect is due to dramatic pressure recovery around the trailing edge of the airfoil.

The Frictional Modes of Piston Rings for an SI Engine (SI 엔진 피스톤-링의 마찰모드)

  • 조성우;최상민;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.114-120
    • /
    • 2000
  • Friction forces of piston rings for a typical SI engine were independently measured while excluding the effects of cylinder pressure, oil starvation and piston secondary motion using a floating liner system. Friction patterns, represented by the measured friction forces, were classified into five frictional modes with regard to the combination of predominant lubrication regimes(boundary, mixed and hydrodynamic lubrication) and stroke regions(mid-stroke and dead centers). The modes were identified on the Stribeck diagram of the dimensionless bearing parameter and friction coefficients which were evaluated at the mid-stroke and at the dead centers. And the frictional modes were estimated to the full operation range. The compression rings behave in the mode where hydrodynamic lubrication is dominant at the mid-stroke and mixed lubrication is dominant at the dead centers under steady operating conditions. However, the oil control ring behave in the mode where mixed lubrication is dominant throughout the entire stroke.

  • PDF

Buckling failure of cylindrical ring structures subjected to coupled hydrostatic and hydrodynamic pressures

  • Ping, Liu;Feng, Yang Xin;Ngamkhanong, Chayut
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.345-360
    • /
    • 2021
  • This paper presents an analytical approach to calculate the buckling load of the cylindrical ring structures subjected to both hydrostatic and hydrodynamic pressures. Based on the conservative law of energy and Timoshenko beam theory, a theoretical formula, which can be used to evaluate the critical pressure of buckling, is first derived for the simplified cylindrical ring structures. It is assumed that the hydrodynamic pressure can be treated as an equivalent hydrostatic pressure as a cosine function along the perimeter while the thickness ratio is limited to 0.2. Note that this paper limits the deformed shape of the cylindrical ring structures to an elliptical shape. The proposed analytical solutions are then compared with the numerical simulations. The critical pressure is evaluated in this study considering two possible failure modes: ultimate failure and buckling failure. The results show that the proposed analytical solutions can correctly predict the critical pressure for both failure modes. However, it is not recommended to be used when the hydrostatic pressure is low or medium (less than 80% of the critical pressure) as the analytical solutions underestimate the critical pressure especially when the ultimate failure mode occurs. This implies that the proposed solutions can still be used properly when the subsea vehicles are located in the deep parts of the ocean where the hydrostatic pressure is high. The finding will further help improve the geometric design of subsea vehicles against both hydrostatic and hydrodynamic pressures to enhance its strength and stability when it moves underwater. It will also help to control the speed of the subsea vehicles especially they move close to the sea bottom to prevent a catastrophic failure.

Tearing of metallic sandwich panels subjected to air shock loading

  • Zhu, Feng;Lu, Guoxing;Ruan, Dong;Shu, Dong-Wei
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.351-370
    • /
    • 2009
  • This paper presents a computational study for the structural response of blast loaded metallic sandwich panels, with the emphasis placed on their failure behaviours. The fully-clamped panels are square, and the honeycomb core and skins are made of the same aluminium alloy. A material model considering strain and strain rate hardening effects is used and the blast load is idealised as either a uniform or localised pressure over a short duration. The deformation/failure procedure and modes of the sandwich panels are identified and analysed. In the uniform loading condition, the effect of core density and face-sheets thicknesses is analysed. Likewise, the influence of pulse shape on the failure modes is investigated by deriving a pressure-impulse (P-I) diagram. For localised loading, a comparative study is carried out to assess the blast resistant behaviours of three types of structures: sandwich panel with honeycomb core, two face-sheets with air core and monolithic plate, in terms of their permanent deflections and damage degrees. The finding of this research provides a valuable insight into the engineering design of sandwich constructions against air blast loads.