• Title/Summary/Keyword: pressure injection

Search Result 2,436, Processing Time 0.036 seconds

Influence of Intraventricular Taurine on the Cardiovascular System of the Rabbit (측뇌실내 Taurine이 가토의 혈압 및 심박에 미치는 영향)

  • Lim, Dong-Yoon;Choi, Dong-Joon;Kim, Bong-Han
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.27-40
    • /
    • 1992
  • The purpose of the present study is an attempt to investigate the effect of intraventricular taurine, which is a naturally occuring amino acid containing sulfur and has inhibitory action in brain, on heart rate and blood pressure in the urethane anesthetized rabbits and also to elucidate the mechanism of its cardiovascular actions. Taurine $(0.15{\sim}1.5\;mg)$ injected into the lateral ventricle of anesthetized normontensive rabbits produced a dose-related fall in arterial blood pressure and heart rate, which were marked and long-lasting along with considerable respiratory depression. However, the intravenous administration of taurine at the same dose with intraventricular injection did not induce any changes in blood pressure as well as heart rate. Depressor responses induced by taurine were inhibited significantly by pretreatment with chlorisondamine, clonidine, strychnine and bicuculline but not by atropine, vagotomy, propranolol and metoclopramide. Moreover, taurine did not affect the pressor responses of norepinephrine. Taurine-induced bradycardic effects were blocked clearly by pretreatment with chlorisondamine, propranolol, clonidine, strychnine and bicuculline, while they were not influenced by atropine, vagotomy and metoclopramide. These experimental results suggest that intraventricular taurine causes long-lasting hypotensive and bradycardic actions, and that these cardiovascular effects may be exerted through taurinergic (glycinergic) and GABAergic receptors which are associated with catecholaminergic neurons in brain.

  • PDF

Vasorelaxing Activity of Ulmus davidiana Ethanol Extracts in Rats: Activation of Endothelial Nitric Oxide Synthase

  • Cho, Eun-Jung;Park, Myoung-Soo;Kim, Sahng-Seop;Kang, Gun;Choi, Sung-A;Lee, Yoo-Rhan;Chang, Seok-Jong;Lee, Kwon-Ho;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.339-344
    • /
    • 2011
  • Ulmus davidiana var. japonica Rehder (Urticales: Ulmaceae) (UD) is a tree widespread in northeast Asia. It is traditionally used for anticancer and anti-inflammatory therapy. The present study investigated the effect of an ethanol extract of UD on vascular tension and its underlying mechanism in rats. The dried root bark of UD was ground and extracted with 80% ethanol. The prepared UD extract was used in further analysis. The effect of UD on the cell viability, vasoreactivity and hemodynamics were investigated using propidium iodide staining in cultured cells, isometric tension recording and blood pressure analysis, respectively. Low dose of UD ($10{\sim}100{\mu}g/ml)$ did not affect endothelial cell viability, but high dose of UD reduced cell viability. UD induced vasorelaxation in the range of $0.1{\sim}10{\mu}g/ml$ with an $ED_{50}$ value of $2{\mu}g/ml$. UD-induced vasorelaxation was completely abolished by removal of the endothelium or by pre-treatment with L-NAME, an inhibitor of nitric oxide synthase. UD inhibited calcium influx induced by phenylephrine and high $K^+$ and also completely abolished the effect of L-NAME. Intravenous injection of UD extracts (10~100 mg/kg) decreased arterial and ventricular pressure in a dose-dependent manner. Moreover, UD extracts reduced the ventricular contractility (+dP/dt) in anesthetized rats. However, UD-induced hypotensive actions were minimized in L-NAME-treated rats. Taken together, out results showed that UD induced vasorelaxation and has antihypertensive properties, which may be due the activation of nitric oxide synthase in endothelium.

Preparation of Dextran Microparticles by Using the SAS Process (초임계 반용매 재결정 공정을 이용한 Dextran 입자의 제조)

  • Kang, Dong-Yuk;Min, Byoung-Jun;Rho, Seon-Gyun;Kang, Choon-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.958-964
    • /
    • 2008
  • In this work, micro-sized dextran particles, which have recently been focused as one of the candidate materials for the Drug Delivery System(DDS), were prepared by means of the Supercritical Antisolvent (SAS) process with $CO_2$. With dimethyl sulfoxide(DMSO) as the solvent, effects of the operating variables such as temperature (308.15~323.15 K), pressure(90~130 bar), solute concentration(10~20 mg/ml), and the molecular weight of the solute(Mw=37,500, 450,000) on the size and morphology of the resulting particles were thoroughly observed. The higher solute concentration led to the larger particles, however, the injection velocity of the solution and pressure did not show significant effects on the resulting particle size. With dextran of the lower molecular weight, the smallest particles were obtained at 313.15 K. On the other hand, the size of the particles from the high molecular weight dextran ranged between $0.1{\sim}0.5{\mu}m$ with an incremental effect of the temperature and pressure. For the solute concentration of 5 mg/ml, the lower molecular weight dextran did not form discrete particles while aggregation of the particles appeared when the solute concentration exceeded 15 mg/ml for the higher molecular weight dextran. It is believed that if the solute concentration is too low, the degree of the supersaturation in the recrystallization chamber would not be sufficient for initiation of the nucleation and growth mechanism. Instead, the spinodal decomposition mechanism leads to formation of the island-like phase separation which appears similar to aggregation of the discrete particles. This effect would be more pronounced for the smaller molecular weight polymer system due to the narrower phase-splitting region.

Simulation Analysis of Sludge Disposal and Volatile Fatty Acids Production from Gravity Pressure Reactor via Wet Air Oxidation (습식산화반응을 통한 중력식반응기로부터의 슬러지 처리 및 유기산 생산 공정모사)

  • Park, Gwon Woo;Seo, Tae Wan;Lee, Hong-Cheol;Hwang, In-Ju
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.248-254
    • /
    • 2016
  • Efficacious wastewater treatment is essential for increasing sewage sludge volume and implementing strict environmental regulations. The operation cost of sludge treatment amounts up to 50% of the total costs for wastewater treatment plants, therefore, an economical sludge destruction method is crucially needed. Amid several destruction methods, wet air oxidation (WAO) can efficiently treat wastewater containing organic pollutants. It can be used not only for sludge destruction but also for useful by-product production. Volatile fatty acids (VFAs), one of many byproducts, is considered to be an important precursor of biofuel and chemical materials. Its high reaction condition has instituted the study of gravity pressure reactor (GPR) for an economical process of WAO to reduce operation cost. Simulation of subcritical condition was conducted using Aspen Plus with predictive Soave-Redlich-Kwong (PSRK) equation of state. Conjointly, simulation analysis for GPR depth, oxidizer type, sludge flow rate and oxidizer injection position was carried out. At GPR depth of 1000m and flow rate of 2 ton/h, the conversion and yield of VFAs were 92.02% and 0.17g/g, respectively.

Numerical Modelling of One Dimensional Gas Injection Experiment using Mechanical Damage Model: DECOVALEX-2019 Task A Stage 1A (역학손상모델을 이용한 1차원 기체 주입 시험 모델링: 국제공동연구 DECOVALEX-2019 Task A Stage 1A)

  • Lee, Jaewon;Lee, Changsoo;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.29 no.4
    • /
    • pp.262-279
    • /
    • 2019
  • In the engineering barriers of high-level radioactive waste disposal, gases could be generated through a number of processes. If the gas production rate exceeds the gas diffusion rate, the pressure of the gas increases and gases could migrate through the bentonite buffer. Because people and the environment can be exposed to radioactivity, it is very important to clarify gas migration in terms of long-term integrity of the engineered barrier system. In particular, it is necessary to identify the hydro-mechanical mechanism for the dilation flow, which is a very important gas flow phenomenon only in medium containing large amounts of clay materials such as bentonite buffer, and to develop and validate new numerical approach for the quantitative evaluation of the gas migration phenomenon. Therefore, in this study, we developed a two-phase flow model considering the mechanical damage model in order to simulate the gas migration in the engineered barrier system, and validated with 1D gas flow modelling through saturated bentonite under constant volume boundary conditions. As a result of numerical analysis, the rapid increase in pore water pressure, stress, and gas outflow could be simulated when the dilation flow was occurred.

A preliminary study for numerical and analytical evaluation of surface settlement due to EPB shield TBM excavation (토압식 쉴드 TBM 굴착에 따른 지반침하 거동 평가에 관한 해석적 기초연구)

  • An, Jun-Beom;Kang, Seok-Jun;Kim, Jung Joo;Kim, Kyoung Yul;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.183-198
    • /
    • 2021
  • The EPB (Earth Pressure Balanced) shield TBM method restrains the ground deformation through continuous excavation and support. Still, the significant surface settlement occurs due to the ground conditions, tunnel dimensions, and construction conditions. Therefore, it is necessary to clarify the settlement behavior with its influence factors and evaluate the possible settlement during construction. In this study, the analytical model of surface settlement based on the influence factors and their mechanisms were proposed. Then, the parametric study for controllable factors during excavation was conducted by numerical method. Through the numerical analysis, the settlement behavior according to the construction conditions was quantitatively derived. Then, the qualitative trend according to the ground conditions was visualized by coupling the numerical results with the analytical model of settlement. Based on the results of this study, it is expected to contribute to the derivation of the settlement prediction algorithm for EPB shield TBM excavation.

Development of Optimal Antiviral Coating Method for the Air Filtration System of Subway Station (지하역사 승강장 공조 시스템 필터용 항바이러스 코팅 성능 및 재생 성능 평가)

  • Park, Dae Hoon;Hwang, Jungho;Shin, Dongho;Kim, Younghun;Lee, Gunhee;Park, Inyong;Kim, Sang Bok;Hong, Keejung;Han, Bangwoo
    • Particle and aerosol research
    • /
    • v.18 no.1
    • /
    • pp.9-21
    • /
    • 2022
  • In this study, a novel antiviral coating method for the air filtration system of subway station was investigated. Using dry aerosol coating process, we developed a high-performance antiviral air filter with spark discharger and carbon brush type ionizer. Silver nanoparticles were produced by a spark discharge generation system with ion injection system and were used as antiviral agents coated onto a medium grade air filter. The pressure drop, filtration efficiency, and antiviral ability of the filter against aerosolized MS2 virus particles as a surrogate of SARS-CoV-2 virus were tested with dust contamination. Dust contamination caused the increase of the filtration efficiency and pressure drop, while the antiviral agents (in this study, silver nanoparticles) coating did not have any significant effect on the filtration efficiency and pressure drop. Using these properties, we suggested a novel method to maximize the antiviral performance of the antiviral air filter that was contaminated by dust particles. Moreover theoretical analysis of antiviral ability with dust contamination and re-coated antiviral agents was carried out using a mathematical model to calculate the time-dependent antiviral effect of the filter under actual conditions of subway station. Our model can be used to apply on antiviral air filtration system of subway station for prevention of pandemic diffusion, and predict the life cycle of an antiviral filter.

Case study on soil conditioning for EPB tunneling and troubleshooting in various grounds (다양한 지반에서의 EPB TBM 첨가제 사용 및 문제 해결 사례 연구)

  • Han-byul Kang;Sung-wook Kang;Jae-hoon Jung;Jae-won Lee;Young Jin Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.65-85
    • /
    • 2023
  • The use of TBM (Tunnel boring machine) has increased worldwide due to its performance together with the benefit of being safely and environmentally friendly compared to conventional tunneling. In particular, EPB (Earth Pressure Balanced) TBM is widely used because it can be applied to various grounds compared to Open TBM. Also EPB TBM has a simple mechanical structure and advantages in cost, requires less ground area than Slurry TBM. EPB TBM has advantages in soft ground, and more importantly, can extend its applicability by use of appropriate soil conditioning, which improves mechanical and hydrological properties of excavated soil and increases the excavation performance of EPB TBM. Various studies suggested the proper mixing ratio and injection ratio, but almost they are limited to laboratory test under atmospheric pressure such as slump test. Actual field conditions may differ depending on the ground and mechanical condition. In this study, first the amount of used soil conditioning used in the field with various grounds from hard rock to soft ground was estimated through laboratory tests and compared with the estimate in design stage. And also it was compared with the amount used during actual excavation. In addition, experience of soil conditioning for the problems of cutter head clogging and groundwater inrush that occurred during excavation is discussed. Finally, lesson learned for the use of soil conditioning in difficult ground condition such as mixed ground are reviewed.

Pullout Resistance of Pressurized Soil-Nailing by Cavity Expansion Theory (공팽창이론에 의한 압력식 쏘일네일링의 인발저항력 산정)

  • Seo, Hyung-Joon;Park, Sung-Won;Jeong, Kyeong-Han;Choi, Hang-Seok;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.35-46
    • /
    • 2009
  • Pressure grouting is a common technique in geotechnical engineering to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressure grouting has been applied to a soil-nailing system which is widely used to improve slope stability. The soil-nailing design has been empirically performed in most geotechnical applications because the interaction between pressurized grouting paste and the adjacent ground mass is complicated and difficult to analyze. The purpose of this study is to analyze the increase of pullout resistance induced by pressurized grouting with the aid of performing laboratory model tests and field tests. In this paper, two main causes of pullout resistance increases induced by pressurized grouting were verified: the increase of mean normal stress and the increase of coefficient of pullout friction. From laboratory tests, it was found that dilatancy angle could be estimated by modified cavity expansion theory using the measured wall displacements. The radial displacement increases with dilatancy angle decrease and the dilatancy angle increases with injection pressure increase. The measured pullout resistance obtained from field tests is in good agreement with the estimated one from the modified cavity expansion theory.

The Development of Evaluation Chart for the Applicability of CO2 Flooding in Oil Reservoirs and Its Applications (생산유전의 CO2 공법 적용성 평가를 위한 평가차트 개발 및 응용)

  • Kwon, Sunil;Cho, Hyunjin;Ha, Sehun;Lee, Wonkyu;Yang, Sungoh;Sung, Wonmo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.638-647
    • /
    • 2007
  • In this study, we present the evaluation chart for assessing the applicability of $CO_2$ flooding method to oil reservoirs. The evaluation chart consists of four categories as source availability, miscibility, applicability and injecting method of miscible flooding. The applicability of reservoir and oil in the chart has basic items of the properties such as oil gravity, viscosity, oil saturation, reservoir temperature and permeability, and these are quantitatively graded. Meanwhile, for additional items of $CO_2$ purity, reservoir thickness and formation dip, they are graded as "highmediumlow". In the case of evaluating the injection method of either continuous injection or WAG ($CO_2$), the qualitative decision will be made according to formation dip, vertical permeability, reservoir thickness, etc. The recommended score in the chart was assigned by utilizing 51 oil producing fields which $CO_2$ flooding is successfully being applied. The evaluation chart developed in this work has been applied to the Captain oil producing field located in Scotland as well as to the Onado oil field of Venezuela, which Korean oil companies have participated in. For the Captain field, the reservoir quality in terms of permeability and porosity is considered to be very excellent to flow the oil. The oil in captain field contains heavier component of $C_{21+}$ as 54%. Therefore, this heavy oil could be immiscibly displaced, hence the evaluating result with the basis of immiscible criteria shows that $CO_2$ immiscible flooding in this field could be properly applied. In the case of Onado oil producing field, since the estimated minimum miscibility pressure is lower than the reservoir pressure, it was assessed that the Onado field would be efficiently conducted for $CO_2$ miscible flooding.