• Title/Summary/Keyword: pressure injection

Search Result 2,438, Processing Time 0.035 seconds

Neuronal Activity of the Vestibular Nuclei Following Acute Hypotension in Rats

  • Park, Byung-Rim;Kim, Min-Sun;Baik, Kum-Hyun;Lee, Moon-Young;Choi, Myung-Ae;Lee, Jae-Hyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.4
    • /
    • pp.199-205
    • /
    • 2002
  • The role of peripheral vestibular receptors in acute hypotension was investigated in anesthetized rats. Acute hypotension was induced by either intravenous infusion of sodium nitroprusside (SNP) or by experimental hemorrhage, and electrical activity and expression of cFos-like immunoreactive (cFL) protein were measured in the medial vestibular nuclei (MVN). Blood pressure decreased proportionately to the does of intravenous SNP and to the volume of the hemorrhage. Blood pressure decreased 10, 30, 50% for the 5, 10, $15{\mu}g/kg$ SNP injection, respectively, and also decreased 30 and 50% after 1- and 2-ml blood loss, respectively, due to hemorrhage. In animals with intact labyrinths, acute hypotension induced by either intravenous infusion of SNP or hemorrhage produced different electrical activities with three different patterns in type I and II neurons of MVN. The responses of type I neurons showed excitatory in 2/3 of recorded neurons and inhibitory or no change in 1/3 of neurons, while the responses of type II neurons showed inhibitory in 2/3 of recorded neurons and excitatory or no change in 1/3 of neurons. In unilateral labyrinthectomized animals, 2/3 of type I neurons ipsilateral to the lesion showed an inhibitory response, and 2/3 of contralateral type I neurons showed an excitatory response after the induction of acute hypotension. The response patterns of type II neurons were opposite from those of the type I neurons. After 30% decrease in blood pressure, cFL protein expressed in the bilateral vestibular nuclei of control animals with intact labyrinths. Expression of cFL protein increased significantly proportionately to the reduction of blood pressure. The unilateral labyrinthectomized animals with acute hypotension produced expression of cFL neurons in contralateral vestibular nuclei to the lesion side, but not in ipsilateral vestibular nuclei. However, cFL protein was not expressed in bilateral vestibular nuclei after acute hypotension in bilateral labyrinthectomized animals. These results suggest that the peripheral vestibular receptors might play a significant role in controlling blood pressure following acute hypotension via activation of type I neurons and inhibition of type II neurons in the vestibular nuclei.

Studies on Involvement of Central GABAergic Mechanism and Central ${\alpha}_{2}-Adrenoceptors$ in Pressor Responses to Raised Intracranial Pressure (두개내압상승에 의한 혈압상승작용과 중추 GABA계 및 중추 ${\alpha}_{2}$-아드레날린 수용체와의 관계)

  • Kim, Yung-Sik
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.23-32
    • /
    • 1993
  • Recent studies have shown that a GABAergic mechanism in the brain modulates arterial blood pressure (BP) through alterations of sympathetic activity in the brain. The purpose of the present study was to determine if this modulation is involved in the pressor response to raised intracranial pressure (ICP). The pressor response to raised ICP was abolished by pretreatment of anesthetized rabbits with intracerebroventricular (icv) muscimol (a GABA agonist) as well as with icv clonidine $(an\;{\alpha}_2-agonist)$. Raising ICP in the hypertensive state after icv yohimbine $(an\;{\alpha}_2-antagonist)$ did not cause an additional increase in the BP, whereas raising ICP in the hypertensive state following icv bicuculline (a GABA antagonist) produced a further increase. Bicuculline produced an increase of the BP which had been lowered by muscimol or by clonidine, whereas it failed to increase the hypertensive state induced by either previous yohimbine or raised ICP. Yohimbine reversed the BP which had been made low by clonidine but was incapable of raising the hypotensive state after muscimol. Yohimbine failed to increase the heightened BP due to raised ICP, whereas bicuculline-induced pressor state was further elevated by yohimbine. Muscimol, besides the bicuculline-antagonizing property, inhibited the pressor response to yohimbine, suggesting participation of a GABAergic mechanism in the pressor action of yohimbine. From these results it was inferred that there were three ways in which BP could be increased via raised ICP: inactivation of the inhibitory sympathetic activity through (1) ${\alpha}_{2}-adrenoceptors$, (2) bicuculline-sensitive GABA receptors, (3) yohimbine-sensitive, clonidine-acting GABAergic sites.

  • PDF

Experimental Study on Fracture Pressure, Permeability Enhancement and Fracture Propagation using Different Fracture Fluids (다양한 파쇄 유체별 파쇄압력, 투과도 증진 및 균열전파에 관한 실험적 연구)

  • Choi, JunHyung;Lee, Hyun Suk;Kim, Do Young;Nam, Jung Hun;Lee, Dae Sung
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.41-51
    • /
    • 2021
  • The hydraulic fracturing developed to improve permeability of tight reservoir is one of key stimulation technologies for developing unconventional resources such as shale gas and deep geothermal energy. The experimental study was conducted to improve disadvantage of hydraulic fracturing which has simple fracture pattern and poor fracturing efficiency. The fracturing experiments was conducted for tight rock using various fracturing fluids, water, N2, and CO2 and the created fracture pattern and fracturing efficiency was analyzed depending on fracturing fluids. The borehole pressure increased rapidly and then made fractures for hydraulic fracturing with constant injection rate, however, gas fracturing shows slowly increased pressure and less fracture pressure. The 3D tomography technic was used to generate images of induced fracture using hydraulic and gas fracturing. The stimulated reservoir volume (SRV) was estimated increment of 5.71% (water), 12.72% (N2), and 43.82% (CO2) respectively compared to initial pore volume. In addition, permeability measurement was carried out before and after fracturing experiments and the enhanced permeability by gas fracturing showed higher than hydraulic fracturing. The fracture conductivity was measured by increasing confining stress to consider newly creating fracture and closing induced fracture right after fracturing. When the confining stress was increased from 2MPa to 10MPa, the initial permeability was decreased by 89% (N2) and 50% (CO2) respectively. This study shows that the gas fracturing makes more permeability enhancement and less reduction of induced fracture conductivity than hydraulic fracturing.

Swelling behavior Simulation Study of KJ-II Bentonite Buffer Blocks under Various Experimental Conditions (다양한 실험조건에 따른 경주 벤토나이트 완충재 블록의 팽윤 거동 해석)

  • Lee, Deuk-Hwan;Go, Gyu-Hyun;Lee, Gi-Jun;Yoon, Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.29-40
    • /
    • 2024
  • This study aimed to evaluate the swelling behavior characteristics of KJ-II buffer blocks by performing numerical analysis of swelling pressure measurement experiments using the nonlinear elasticity model of COMSOL Multiphysics. The analysis was conducted under boundary conditions that included isotropic constraints and water injection pressure, mirroring the experimental settings. Validation of the numerical model was achieved by comparing its outputs with experimental results. The validated model was then used to simulate swelling deformations under unconfined conditions and to analyze swelling pressure as influenced by dry density and the geometric shape of the buffer material. The results accurately represented the swelling deformation observed during the saturation process and demonstrated that swelling pressure increases with higher dry density. Moreover, simulations concerning the geometric shape of the buffer material indicated a markedly faster rate of pressure increase in U-shaped samples compared to cylindrical ones. Analysis suggested that stress manifested preemptively near the internal edges of U-shaped samples during saturation. To enhance the simulation's fidelity to actual buffer material behavior, further refinement of the analysis model using a nonlinear elasticity model is recommended.

Involvement of Serotonergic Mechanism in the Nucleus Tractus Solitarius for the Regulation of Blood Pressure and Heart Rate of Rats (흰쥐의 혈압 및 심박동수 조절에 대하여 Nucleus Tractus Solitarius 부위의 Serotonin성 기전의 역할)

  • Lee, Yong-Kyu;Hong, Ki-Whan;Yoon, Jae-Soon
    • The Korean Journal of Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 1989
  • In this study, it was aimed to investigate the role of serotonergic neurotransmission in nucleus tractus solitarius (NTS) for the central regulation of blood pressure and heart rate and its involvement in baroreceptor reflex activation in rats. A microinjection of 5-hydroxytryptamine (5-HT) into the NTS produced decreases in blood pressure and heart rate. Maximal decreases were $34.4{\pm}1.6$ mmHg and $41.7{\pm}10.2$ beats per min by 300 pmol of 5-HT. Microinjections of ${\alpha}-methylnor-adrenaline$ $({\alpha}-MNE)$ and clonidine manifested similar decreases in blood pressure and heart rate. The hypotensive and bradycardial effects of 5-HT were blocked by previous applications of 5-HT antagonists, ritanserin, methysergide and ketanserin into the NTS, respectively. By pretreatment with reserpine and 6-hydroxydopamine (6-OHDA, i.c.v.), both hypotensive and bradycardial effects of 5-HT were significantly attenuated. Pretreatment with 5, 7-dihydroxytryptamine (5,7-DHT, i.c.v.) enhanced the hypotensive and bradycardial effects of 5-HT. Similarly, following pretreatment with 6-OHDA, the effects of clonidine were increased. Pretreatment either with 5,7-DHT or 6-OHDA significantly attenuated the sensitivity of baroreflex produced either by phenylephrine or by sodium nitroprusside. When either 5,7-DHT or 6-OHDA was injected into the NTS $(5,7-DHT;\;8{\mu}g\;6-OHDA;\;10{\mu}g)$, both of the baroreflex sensitivities were impaired. In the immunohistochemical study, the injection of 6-OHDA into the the NTS led to reduction of axon terminal varicosity, however, the injection did not reduce the numbers of catecholaminergic cell bodies. Likewise, when 5,7-DHT was injected into the NTS, the varicosity of serotonergic axon terminals was markedly reduced. Based on these results, it is suggested that (1) stimulation of serotonergic receptors in the NTS leads to decreases in blood pressure and heart rate as observed with the stimulation of catecholaminergic system, (2) both serotonergic and catecholaminergic receptors may be located postsynaptically, and (3) the serotonergic neurons as well as catecholaminergic neurons may have a close relevance for the activation of baroreflex.

  • PDF

Coupled Hydro-Mechanical Modelling of Fault Reactivation Induced by Water Injection: DECOVALEX-2019 TASK B (Benchmark Model Test) (유체 주입에 의한 단층 재활성 해석기법 개발: 국제공동연구 DECOVALEX-2019 Task B(Benchmark Model Test))

  • Park, Jung-Wook;Kim, Taehyun;Park, Eui-Seob;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.670-691
    • /
    • 2018
  • This study presents the research results of the BMT(Benchmark Model Test) simulations of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to predict fault reactivation and the coupled hydro-mechanical behavior of fault. BMT scenario simulations of Task B were conducted to improve each numerical model of participating group by demonstrating the feasibility of reproducing the fault behavior induced by water injection. The BMT simulations consist of seven different conditions depending on injection pressure, fault properties and the hydro-mechanical coupling relations. TOUGH-FLAC simulator was used to reproduce the coupled hydro-mechanical process of fault slip. A coupling module to update the changes in hydrological properties and geometric features of the numerical mesh in the present study. We made modifications to the numerical model developed in Task B Step 1 to consider the changes in compressibility, Permeability and geometric features with hydraulic aperture of fault due to mechanical deformation. The effects of the storativity and transmissivity of the fault on the hydro-mechanical behavior such as the pressure distribution, injection rate, displacement and stress of the fault were examined, and the results of the previous step 1 simulation were updated using the modified numerical model. The simulation results indicate that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing interaction and collaboration with other research teams of DECOVALEX-2019 Task B and validated using the field experiment data in a further study.

Analgesic Effect of Grape Seed Proanthocyanidin Extract in Fibromyalgia Animal Model (섬유근통 동물 모델에서 포도씨 추출 proanthocyanidin의 진통 효과)

  • Mun, Hyun-Il;Kim, Seong-Ho;Jang, Tae-Jung;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.496-502
    • /
    • 2010
  • The acidic saline animal model of pain has been suggested to mimic fibromyalgia (FM). Oligomeric proanthocyanidin complexes (OPC) from grape seeds are known to act as an antioxidant. We studied the effects of OPC on the pain threshold in the acidic saline animal model of pain. The left gastrocnemius muscle was injected with $100\;{\mu}l$ of saline at pH 4.0 under brief isoflurane anesthesia on days 0 and 5. Control rats (n=5) received identical injections of physiological saline (pH 7.2) on the same schedule. Rats (n=10) with acidic saline injection were separated into two study subgroups. After measurement of pre-drug pain thresholds, rats were injected intraperitoneally with either saline or OPC 300 mg/kg. Paw withdrawal thresholds to pressure were again measured 60 min after intraperitoneal injection. Nociceptive thresholds were measured with a Dynamic Plantar Aesthesiometer by applying an increasing pressure to right or left hind paw until the rat withdrew the paw. Compared to baseline (day 0), acid injections produced mechanical hyper-responsiveness on day 7 (pre-drug) in these rats [p<0.05]. A potent antihyperalgesic effect was observed when rats were injected intraperitoneally with OPC 300 mg/kg [injected paw, p=0.001; contralateral paw, p=0.002]. OPC treatment decreased the expression of acid sensing ion channel 3 in the brain motor cortex area on immunohistochemical staining when OPC 300 mg/kg was administered intraperitoneally in the animal model of FM pain [p<0.05]. Further research is required to determine the efficacy of OPC treatments in FM pain in humans.

Wood Decay Properties of Difference MCQ Retention Level (MCQ 보유량에 따른 목재의 부후 특성)

  • Lee, Hansol;Hwang, Won-Joung;Lee, Hyun-Mi;Son, Dong-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.716-725
    • /
    • 2016
  • In this study, MCQ (Micronized copper Quat) which was copper-based wood preservative, was investigated on decay properties by difference of the its infiltration volume. After pressure-treatment with different MCQ concentration, test specimens (Japanese Red Pine) were exposed by a brown-rot fungus (Fomitopsis palustris). At the end of the 12 weeks exposure to the fungus, untreated specimen was showed the mass loss of more than 35%, and the value of preservative effectiveness of MCQ by indoor decay was $3.99{\pm}0.42kg/m^3$. Therefore, MCQ should be pressure-injected at least $3.99kg/m^3$. The three dimensional of the specimens were observed by using the light microscope and scanning electron microscope, Untreated and treatment specimens with low concentration generally had underwent serious decays and had a lot of fungal hyphae. Howere, the formation of bore hole by hyphae were not observed. Mass loss and decay properties of specimens were affected by amount of MCQ injection. Therefore, it is necessary to the review of the adequacy of the MCQ injection amount in domestic environments.

Effects of Pain Stimulation on EEG in Dogs Anesthetized withMedetomidine and Tiletamine/Zolazepam (Medetomidine과 Tiletamine/Zolazepam을 병용마취한 개에서 통증자극이 뇌파 변화에 미치는 영향)

  • Choi, Woo-Shik;Jang, Hwan-Soo;Kwon, Young-Sam;Jang, Kwang-Ho
    • Journal of Veterinary Clinics
    • /
    • v.27 no.2
    • /
    • pp.136-141
    • /
    • 2010
  • The aim of this study is to investigate whether medetomidine (MED) and tiletamine/zolazepam (ZT) combination in dogs provide the sufficient analgesia during the period of the stage of surgical anesthesia determined by the response to the noxious stimuli, which were evaluated by the change of electroencephalogram (EEG) and hemodynamic values. Seven clinically healthy, adult beagle dogs were used. They were used repeatedly at interval of a week, according to a randomized design. This study had 2 experimental groups. In Group 1, dogs received $30\;{\mu}g/kg$ of medetomidine and 10 mg/kg of tiletamine/zolazepam. Both drugs were administered intramuscularly. In Group 2, dogs were medicated with the same method as in Group 1, except the pedal withdrawal reflex test was done. In Group 2, interdigital regions were grasped with a mosquito forceps for 30 seconds, every 5 min from 10 min to 45 min after ZT injection. During all recording stages, the power for each band, mean arterial pressure and heart rates were calculated. On EEG, no significant changes were observed between groups. Although mean arterial pressure and heart rate were increased 10 min after ZT injection, no significant differences were observed between groups. In conclusion, the MED and ZT anesthesia in dogs are seemed to provide a satisfactory analgesic effect during the period of surgical anesthesia based on EEG with pedal withdrawal reflex test.

Magnesium-induced Relaxation in Rat Aorta (Magnesium에 의한 흰쥐 대동맥 이완)

  • Oh, Sung-suck;Lee, Sang-woo;Kang, Hyung-sub;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.3
    • /
    • pp.373-382
    • /
    • 2003
  • Magnesium ion ($Mg^{2+}$) is a vasodilator, but little is known about its mechanism of action on vascular system. In vitro, extracellular magnesium sulfate ($MgSO_4$) produced relaxation in phenylephrine (PE) or high KCl-precontracted isolated rat thorocic aorta with (+E) or without (-E) endothelium in a concentration-dependent manner. The $MgSO_4$-induced relaxations were not affected by removal of the endothelium. Pretreatment of +E or -E aortic rings with nitric oxide synthase (NOS) inhibitors ($20{\mu}M$ L-NNA, $100{\mu}M$ L-NAME, $1{\mu}M$ dexamethasone and $400{\mu}M$ aminoguanidine), cyclooxygenase inhibitor ($10{\mu}M$ indomethacin), guanylate cyclase inhibitors ($10{\mu}M$ ODQ and $30{\mu}M$ methylene blue) and $Ca^{2+}$ transport blocker ($10{\mu}M$ ryanodine) did not affect the relaxant effects of $MgSO_4$. $Ca^{2+}$ channel blockers ($0.3{\mu}M$ nifedipine and $0.5{\mu}M$ veropamil) completely decreased the relaxant effects of $MgSO_4$ in +E and -E aortic rings. However, in $Ca^{2+}$-free medium, $MgSO_4$-induced vasorelaxation was potentiated and this response was inhibited by nifedipine. Protein kinase C (PKC) inhibitors ($1.0{\mu}M$ staurosporine, $0.5{\mu}M$ tamoxifen and $0.1{\mu}M$ H7) or PLC inhibitor ($100{\mu}M$ NCDC) markedly decreased the relaxant effects of $MgSO_4$ in +E and -E aortic rings. In vivo, infusion of $MgSO_4$ elicited significant decreases in arterial blood pressure. After intravenous injection of nifedipine ($150{\mu}g/kg$) and NCDC (3 mg/kg), infusion of $MgSO_4$ inhibited the $MgSO_4$-lowered blood pressure markedly. However, after introvenous injection of saponin (15 mg/kg), L-NNA (3 mg/kg), L-NAME (5 mg/kg), indomethacin (2 mg/kg), methylene blue (15 mg/kg) and aminoguanidine (10 mg/kg) failed to inhibit it. These results suggest that endothelial NQ-cGMP or prostaglandin pathway is not involved in vasorelaxant or hypotensive action of $Mg^{2+}$ and that these effects are due to the inhibitory action of $Mg^{2+}$ on the $Ca^{2+}$ channel or PLC-PKC pathway, and are due to the competitive influx of $Mg^{2+}$ and $Ca^{2+}$ through the $Ca^{2+}$ channel.