• Title/Summary/Keyword: pressure injection

Search Result 2,438, Processing Time 0.035 seconds

Study on Spray Visualization and Atomization Characteristics of Air-assist Type Injector for Scramjet Engine (스크램제트 엔진용 공기 보조형 인젝터의 분무 가시화 및 미립화 특성에 관한 연구)

  • Lee, Jinhee;Lee, Sanghoon;Lee, Kyungjae;Kim, Jaiho;Yang, Sooseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.88-96
    • /
    • 2017
  • As a part of the development procedures of scramjet engine with a regenerative cooling system, this experiment was performed using air-assist type injectors for scramjet engine. Two types of injectors were used in this experiment with the 90 and 60 degrees of the injection angle to the main flow. Mie-scattering was used for spray visualization and PDPA was used for the measurement of the atomization characteristics. It was found that increasing the pressure of supplied gas and the distance from nozzle tip led to the enhancement atomization characteristics and the injector with 60 degrees injection angle has better atomization characteristics than 90 degrees injector.

The Effect of Hyaluronan Treatment in Endotoxemic Rats

  • Rho, Byung-Hak;Kwon, Kun-Young;Choi, Won-Il
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.5
    • /
    • pp.390-396
    • /
    • 2011
  • Background: Hyaluronan (HA) is an unbranched glycosaminoglycan. It has been proposed that HA acts as a vehicle for cytokines due to the strong negative charge on its surface. We hypothesized that HA would function like a cytokine scavenger and reduce the inflammatory signaling cascade and this would lead to improved survival in rats suffering with endotoxemia. Methods: Endotoxin (Salmonella, 10 mg/kg) or an equal amount of 0.9% NaCl (NS) was injected into the jugular vein of rats. HA (1,600 kDa, 0.35%) or NS was given at 0.1 mL/kg/h for 3 hours. HA or NS infusion was started at 4 hour after endotoxin injection. The rats were divided into the control and HA groups (n=16 for each group). The mean arterial pressure (MAP) was monitored during HA or normal saline infusion. Survival was assessed every 12 hours for 3 days throughout the experiment. Results: The survival rate (%) of the rats treated with HA was higher (60%) than that of the controls (20%) when HA was infused 4 hours after lipopolysaccharide (LPS) injection. The bronchoalveolar lavage (BAL) fluid of the animals surviving HA or NS infusion 4 hours after LPS showed that the total cell counts and number of neutrophils were significantly (p < 0.01) reduced in the HA treated groups compared with that of the controls (total cell count, $9.2{\times}10^4$/mL vs. $61{\times}10^4$/mL; neutrophils, $21{\times}10^4$/mL vs. $0.2{\times}10^4$/mL, respectively). There was no significant MAP difference between the HA or control groups either with or without endotoxin. Conclusion: Infusion of hyaluronan (1,600 kDa) reduced the BAL total cell count and the number of neutrophils and it improved the survival rate of the endotoxemic rats.

An Analysis of Relationship between Cushion Gas and Gas Withdrawal in Depleted Gas Reservoir as a Gas Storage (고갈가스전의 가스저장전 전환 시 쿠션가스와 가스재생산율과의 관계 분석)

  • Han, Jeongmin;Kim, Joohyung;Sung, Wonmo
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.9-20
    • /
    • 2013
  • Depleted gas reservoir has been already explored and its geologic data, along with its reservoir properties, are already known through seismic exploration and drilling. Therefore it would be less difficult to develope a gas storage from depleted gas reservoir. Cushion gas which remains in the reservoir to maintain pressure affects withdrawal rate of working gas in underground gas storage. In this study, we attempted to investigate the relationship between cushion gas and withdrawal rate using a commercial simulator. From the analyses of the results, it is found that the minimum limit for a cycle of 5-month injection and 5-month withdrawal is 10 wells with 50% cushion gas, and 12 wells with 60% cushion gas for a cycle of 7-month injection and 3-month withdrawal.

Quantitative Approaches for the Determination of Volatile Organic Compounds (VOC) and Its Performance Assessment in Terms of Solvent Types and the Related Matrix Effects

  • Ullah, Md. Ahsan;Kim, Ki-Hyun;Szulejko, Jan E.;Choi, Dal Woong
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • For the quantitative analysis of volatile organic compounds (VOC), the use of a proper solvent is crucial to reduce the chance of biased results or effect of interference either in direct analysis by a gas chromatograph (GC) or with thermal desorption analysis due to matrix effects, e.g., the existence of a broad solvent peak tailing that overlaps early eluters. In this work, the relative performance of different solvents has been evaluated using standards containing 19 VOCs in three different solvents (methanol, pentane, and hexane). Comparison of the response factor of the detected VOCs confirms their means for methanol and hexane higher than that of pentane by 84% and 27%, respectively. In light of the solvent vapor pressure at the initial GC column temperature ($35^{\circ}C$), the enhanced sensitivity in methanol suggests the potential role of solvent vapor expansion in the hot injector (split ON) which leads to solvent trapping on the column. In contrast, if the recurrent relationships between homologues were evaluated using an effective carbon number (ECN) additivity approach, the comparability assessed in terms of percent difference improved on the order of methanol (26.5%), hexane (6.73%), and pentane (5.24%). As such, the relative performance of GC can be affected considerably in the direct injection-based analysis of VOC due to the selection of solvent.

Introcordal Injection of Autologous Fibroelastic Cartilage - Introcordal Injection of Autologous Fibroelastic Cartilage in the Paralyzed Canine Vocal Fold

  • Lee, Byung-Joo;Wang, Soo-Geun;Lee, Jin-Choon
    • Proceedings of the KSLP Conference
    • /
    • 2003.11a
    • /
    • pp.180-180
    • /
    • 2003
  • Objectives : Vocal fold augmentation by injectable material under direct visual control is an easy and simple operation. However, when autologous fat or bovine collagen is used, resorption creates a problem. And autologous fascia is debating about absorption now days. This study is to evaluate the histology of minced and injected autologous auricular cartilage and fat graft in the augmentation of unilateral vocal fold paralysis using a canine model. Methods : Nine dogs were operated. At first, a piece of auricular cartilage was harvested from ear and minced into tiny chips with a scalpel. And also, a piece of fat tissue was harvested from inguinal area and minced into tiny chips with a scalpel. Cutting off a section of the recurrent nerve paralyzed the right vocal fold. The minced cartilage and fat-paste (0.2ml) was injected using a pressure syringe into the paralyzed thyroarytenoid muscle under direct laryngoscopy. Two animals were sacrificed at 3 days, three at 3 weeks, two at 3 months, one at 6 months, one at 12 months. Each dog underwent laryngectomy and serial coronal sections of paraffin blocks from the posterior part of the vocal fold were made. Results : There was no significant complication perioperatively and during follow-up. There was acute inflammatory findings in the graft at 3 days and 3 weeks. The injected cartilage remained in the larynx until 12 months. Conclusion : The autologous auricular cartilage graft is well tolerated and may be very effective material for volumetric augmentation on paralyzed vocal cord.

  • PDF

Solid Circulation Characteristics in a 3 kW Chemical-looping Combustor (3 kW급 매체순환식 가스연소기의 고체순환특성)

  • Ryu, Ho-Jung;Park, Jaehyeon;Kim, Hong-Ki;Park, Moon-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1057-1062
    • /
    • 2008
  • To overcome disadvantages of conventional two interconnected fluidized beds system, a novel two-interconnected fluidized bed process has been adopted to 3kW chemical-looping combustor. This system has two bubbling beds, solid injection nozzles, solid conveying lines, and downcomers. In this study, effects of operating variables such as gas velocity through the solid injection nozzle, fluidizing velocity, solid height, geometry of solid intake hole, bed temperature on solid circulation rate have been investigated in a 3kW chemical-looping combustor. The solid circulation rate increased as the solid height and the opening area of solid intake holes increased. The effect of the fluidizing velocity and the bed temperature were negligible. Moreover, long-term operation of continuous solid circulation up to 50 hours has been performed to check feasibility of stable operation. The pressure drop profiles in the bubbling beds and the downcomers were maintained steadily and solid circulation was smooth and stable.

A Study on Heat Release Fluctuation Using Various Hydrocarbon Fuels (다양한 탄화수소 연료를 이용한 열방출 섭동 연구)

  • Hwang, Donghyun;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.1-10
    • /
    • 2016
  • For the active control of a combustion instability, a change should be made in pressure fluctuation or heat release fluctuation using an acoustic driver or a secondary fuel injection. Also, to determine the location and timing of a secondary fuel injection, one needs to know the distribution of heat release fluctuation under combustion instability. In the present research, the distribution of heat release fluctuation has been experimentally measured by changing hydrocarbon fuel, inlet velocity, equivalence ratio, and acoustic forcing condition. It was confirmed that heat release fluctuation with regards to vortex shedding was significantly affected by the $Damk{\ddot{o}}hler$ number. Under the cases of the $Damk{\ddot{o}}hler$ number above approximately 4 - 5, hot spot region was generated in the leading edge of vortex and cold spot region was in the trailing edge. On the contrary, the cases of the $Damk{\ddot{o}}hler$ number below 3 showed the opposite trend.

CORE THERMAL HYDRAULIC BEHAVIOR DURING THE REFLOOD PHASE OF COLD-LEG LBLOCA EXPERIMENTS USING THE ATLAS TEST FACILITY

  • Cho, Seok;Park, Hyun-Sik;Choi, Ki-Yong;Kang, Kyoung-Ho;Baek, Won-Pil;Kim, Yeon-Sik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1263-1274
    • /
    • 2009
  • Several experimental tests to simulate a reflood phase of a cold-leg LBLOCA of the APR1400 have been performed using the ATLAS facility. This paper describes the related experimental results with respect to the thermal-hydraulic behavior in the core and the system-core interactions during the reflood phase of the cold-leg LBLOCA conditions. The present descriptions will be focused on the LB-CL-09, LB-CL-11, LB-CL-14, and LB-CL-15 tests performed using the ATLAS. The LB-CL-09 is an integral effect test with conservative boundary condition; the LB-CL-11 and -14 are integral effect tests with realistic boundary conditions, and the LB-CL-15 is a separated effect test. The objectives of these tests are to investigate the thermal-hydraulic behavior during an entire reflood phase and to provide reliable experimental data for validating the LBLOCA analysis methodology for the APR1400. The initial and boundary conditions were obtained by applying scaling ratios to the MARS simulation results for the LBLOCA scenario of the APR1400. The ECC water flow rate from the safety injection tanks and the decay heat were simulated from the start of the reflood phase. The simulated core power was controlled to be 1.2 times that of the ANS-73 decay heat curve for LB-CL-09 and 1.02 times that of the ANS-79 decay curve for LB-CL-11, -14, and -15. The simulated ECC water flow rate from the high pressure safety injection pump was 0.32 kg/s. The present experimental data showed that the cladding temperature behavior is closely related to the collapsed water level in the core and the downcomer.

ROLE OF PASSIVE SAFETY FEATURES IN PREVENTION AND MITIGATION OF SEVERE PLANT CONDITIONS IN INDIAN ADVANCED HEAVY WATER REACTOR

  • Jain, Vikas;Nayak, A.K.;Dhiman, M.;Kulkarni, P.P.;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.625-636
    • /
    • 2013
  • Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor 'AHWR' is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI), Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

Effects of Glyphosate and 2,4-D Injection on Selective Control of Robinia pseudo-acacia (Glyphosate와 2,4-D의 주사처리(注射處理)가 아카시아 나무의 방제(防除)에 미치는 영향(影響))

  • Kwon, O.W.;Pyon, J.Y.;Lee, J.C.
    • Korean Journal of Weed Science
    • /
    • v.6 no.2
    • /
    • pp.130-133
    • /
    • 1986
  • Glyphosate and 2,4-D were introduced into the vascular systems of Robinia pseudo-acacia L. (3-5cm diameter) with a syringe-type pressure injector in May, 1985. Robinia pseudo-acacia L. were completely controlled by 3 or 6 ml of 3050ppm glyphosate per tree and 6ml of 1000ppm 2,4-D per tree. Herbicidal efficacy was more effective by 6m1 of combined solutions of 1525ppm glyphosate and 500ppm 2,4-D per tree.

  • PDF