• Title/Summary/Keyword: pressure infiltration

Search Result 210, Processing Time 0.024 seconds

Pore Structure Modification and Characterization of Porous Cordierite with Chemical Vapor Infiltration (CVI) SiC Whisker (화학증착 탄화규소 휘스커에 의한 다공성 코디어라이트의 기공구조 개질 및 특성평가)

  • Kim, Ik-Whan;Kim, Jun-Gyu;Lee, Hwan-Sup;Choi, Doo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.2
    • /
    • pp.132-137
    • /
    • 2008
  • The main purpose of this study is enhancing the filtering efficiency, performance and durability of filter by growing SiC whiskers on cordierite honeycomb substrate. The experiment was performed by Chemical Vapor Infiltration (CVI) in order to control pore morphology of substrate. Increasing the mechanical strength of porous substrate is one of important issues. The formation of "networking structure" in the pore of porous substrate increased mechanical strength. The high pressure gas injection to the specimen showed that a little of whiskers were separated from substrate but additional film coating enhanced the stability of whisker at high pressure gas injection. Particle trap test was performed. More nano-particle was trapped by whisker growth at the pore of substrate. Therefore it is expected that the porous cordierite which deposited the SiC whisker will be the promising material for the application as filter trapping the nano-particles.

Squeeze Casting of SiC Whisker Reinforced Magnesium Composites (용탕단조를 이용한 SiC 휘스카 강화 마그네슘복합재료의 제조)

  • Chang, Si-Young;Shin, Dong-Hyuk;Hong, Sung-Kil;Choi, Jung-Chul
    • Journal of Korea Foundry Society
    • /
    • v.20 no.3
    • /
    • pp.167-172
    • /
    • 2000
  • Squeeze casting was performed to fabricate the SiC whisker reinforced magnesium matrix composites, and the suitability of the squeeze casting for the production of the sound composites was determined by micro/macro-structures observations and tensile test. The two-directional infiltration of the melt and the removal of air during infiltration using the devised mold were necessary to produce the composites. The pressure of 100 MPa was effective for the production of composites with the SiC whisker volume fraction of 30%, but the pressure should be lower than 50 MPa in case of below 20% in the volume fraction. The SiC whiskers in the squeeze cast composites were randomly and densely aligned, and the SiC whiskers/magnesium interfaces were continuously well-bonded. The elastic modulus, 0.2% proof stress and tensile strength in the composite were about 2.5times, l0times and 4times as large as those of magnesium, respectively, indicating that the squeeze casting sufficiently provides the high strength magnesium composites reinforced with SiC whiskers.

  • PDF

Effects of Hand Massage and Hand Holding on the Anxiety in Patients with Local Infiltration Anesthesia (손마사지와 손잡아주기가 국소마취 수술환자의 불안에 미치는 영향)

  • Oh Hyun-Jung;Park Jeong-Sook
    • Journal of Korean Academy of Nursing
    • /
    • v.34 no.6
    • /
    • pp.924-933
    • /
    • 2004
  • Purpose: This study was to examine the effects of hand massage and hand holding as nursing interventions on the anxiety in patients with local infiltration anesthesia. Method: The design of this study was a nonequivalent, control group, non- synchronized design. The subjects of this study consisted of 15 patients for the hand massage group, 15 patients for the hand holding group and 17 patients for the control group awaiting surgery in the operation room of a general hospitalin Daegu. As an experimental treatment, hand massage was carried out by the Hand Massage Protocol developed by Snyder(1995) and interpreted by Cho(1998) and hand holding developed by Cho(1998). The data were analyzed by SPSS/WIN, T-test, ANOVA, Cronbach's a, and the Scheffe test. Results: The hand massage group and hand holding group were more effective than the control group in reducing anxiety, VAS score, systolic blood pressure and pulse rate. Conclusion: Hand massage and hand holding are effective nursing interventions that alleviates the psychological and physiological anxiety of patients with local infiltration anesthesia. In particular, the simple contact of hand holding is regarded as an effective and easily accessible nursing intervention in the operating room.

Stability analyses of railroad cut-off soil slopes considering rainfall infiltration (강우에 의한 침투를 고려한 철도 절개 토사 사면의 안정해석)

  • Lee, Su-Hyung;Hwang, Seon-Keun;Kim, Hyun-Ki;SaGong, Myung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.811-818
    • /
    • 2005
  • Stability analyses on the 17 railroad cut-off soil slopes were carried out. The influences of rainfall infiltration on the slope stabilities were taken into account by seepage analyses using finite element method and by assuming ground water tables to be located adjacent to soil surface. The validity of those analyses were evaluated by comparing the slope failure characteristics between analysis results and the past failure records. The analyses were not appropriate to estimate the failure surface and the method considering only the increase of pore-water pressure (reduction of matric suction) as the influence of rainfall cannot appropriately estimate the surficial failures that occurred most of the cut-off soil slopes. For the better estimation of the surficial failure, the influence of water flows over slope surface which erode soil mass and/or increase driving force, should be evaluated and considered.

  • PDF

Characterization of Physical Factor of Unsaturated Ground Deformation induced by Rainfall (강우를 고려한 불포화 지반변형의 영향인자 평가)

  • Kim, Man-Il;Jeon, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.127-136
    • /
    • 2008
  • Geophysical survey for establishing a wide site for the distribution of water content, wetting front infiltration due to the rainfall, and distribution of groundwater level has been performed by using 8round penetration radar (GPR) method, electrical resistivity method, and so on. On the other hand, a narrow area survey was performed to use a permittivity method such as time domain reflectometry, frequency domain reflectometry, and amplitude domain reflectometry methods for estimating volumetric water content, soil density, and concentration of contaminant in surface and subsurface. The permittivity methods establish more corrective physical parameters than different found survey technologies mentioned above. In this study for establishment of infiltration behaviors for wetting front in the unsaturated soil caused by an artificial rainfall, soil physical parameters for volumetric water content, pore water pressure, and pore air pressure were measured by FDR measurement device and pore water pressure meter which are installed in the unsaturated weathered granite soil with different depths. Consequently, the authors were proposed to a new establishment method for analyzing the variations of volumetric water content and wetting front infiltration from the responses of infiltrating pore water in the unsaturated soil.

A Study on a Runoff Coefficient of Block Paved Area with Considering Regional Rainfall Distribution (지역별 강우분포를 고려한 블록포장지역의 유출계수 산정에 관한 연구)

  • Kang, Shin-Kweon;Kim, Tae-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.111-119
    • /
    • 2008
  • The runoff coefficient for a block paved area is determined with regional rainfall distribution. The Rational Method is a basic equation of a drainage system design and is a function of runoff coefficient, rainfall intensity and area. A runoff coefficient is the ratio of rainfall intensity and runoff. The rainfall intensity which is a function of the return period and rainfall duration differs by region. Therefore the runoff coefficient varies regionally even though there is the same return period and rainfall duration. The ratio of rainfall intensity and rainfall duration is decided by the loss of rainfall. The constant infiltration capacity of Horton's equation is adopted to determine the loss of rainfall. As time passed, the joint of the block paved area through which the infiltration occurs is covered by pollution material, sandy dust, pollen and is hardened by foot pressure, so the constant infiltration capacity may decrease. Six different sites were selected to verify the assumption of the constant infiltration capacity decrease and 10 year return period. 10, 20, and 30 minute rainfall duration were applied to calculate rainfall intensity. The results indicate that the Horton's constant infiltration capacity decreases over time and the minimum constant infiltration capacity is selected to compute runoff coefficients. The runoff coefficients varied by region ranging from $0.94{\sim}0.84$ for 10 minute of rainfall duration.

Microstructure and Wear Characteristics of Nickel Reinforced AC8A Composites

  • Kim, Hyung-Jin;Tulugan, Kelimu;Park, Won-Jo
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.50-55
    • /
    • 2015
  • This study takes AC8A, which is a representative light weight alloy as matrix, and nickel as reinforcement for its superior properties. The manufacturing method applied in this study required low pressure for the infiltration of the metal matrix into the reinforcement. Porous Ni was applied as preform. The fabrication was conducted under 0.3 MPa at 600, 700 and 750 degrees centigrade, respectively. Intermetallic compounds Al3 generated between Al and Ni were observed in the composites. Microstructure, Vickers' hardness and wear characteristics of the composites were also investigated. The result indicates that the structures of compounds created at 650 degree centigrade were distributed densely; the grain size of the substances and the compounds was increased with the infiltration temperature.

Transient filling simulations in unidirectional fibrous porous media

  • Liu, Hai Long;Hwang, Wook-Ryol
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.71-79
    • /
    • 2009
  • The incomplete saturation and the void formation during the resin infiltration into fibrous porous media in the resin transfer molding process cause failure in the final product during its service. In order to better understand flow behavior during the filling process, a finite-element scheme for transient flow simulation across the micro-structured fibrous media is developed in the present work. A volume-of- fluid (VOF) method has been incorporated in the Eulerian frame to capture the evolution of flow front and the vertical periodic boundary condition has been combined to avoid unwanted wall effect. In the microscale simulation, we investigated the transient filling process in various fiber structures and discussed the mechanism leading to the flow fingering in the case of random fiber distribution. Effects of the filling pressure, the shear-thinning behavior of fluid and the volume fraction on the flow front have been investigated for both intra-tow and the inter-tow flows in dual-scale fiber tow models.

Experimental Study on Airtightness Performance of the House with High Levels of Insulation and Airtight Construction (고기밀 고단열 주택의 기밀성능에 관한 실험적 연구)

  • Shin, U-Cheul;Yoon, Jong-Ho;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.61-67
    • /
    • 2005
  • The purpose of this study is to evaluate the air tightness of Zero Energy Solar House(ZeSH) and to propose the construction improvement of junctions and penetrations where air infiltration was identified. Air leakage rate were measured by means of blower door test in accordance with ASTM E779-87. The results showed that ZeSH has an excellent airtightness with ACH50/20 (air change per hour at a pressure difference of 50 Pa between inside outside) of 0.34hr-1 and leakage class E by normalized leakage area of ASHRAE.

PCL Infiltration into a BCP Scaffold Strut to Improve the Mechanical Strength while Retaining Other Properties

  • Kim, Min-Sung;Kim, Yang-Hee;Park, Ih-Ho;Min, Young-Ki;Seo, Hyung-Seok;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.331-337
    • /
    • 2010
  • A highly porous Biphasic Calcium Phosphate (BCP) scaffold was fabricated by the sponge replica method with a microwave sintering technique. The BCP scaffold had interconnected pores ranging from $80\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To enhance the mechanical properties of the porous scaffold, infiltration of polycaprolactone (PCL) was employed. The microstructure of the BCP scaffold was optimized using various volume percentages of polymethylmethacrylate (PMMA) for the infiltration process. PCL successfully infiltrated into the hollow space of the strut formed after the removal of the polymer sponge throughout the degassing and high pressure steps. The microstructure and material properties of the BCP scaffold (i.e., pore size, morphology of infiltrated and coated PCL, compressive strength, and porosity) were evaluated. When a 30 vol% of PMMA was used, the PCL-BCP scaffold showed the highest compressive strength. The compressive strength values of the BCP and PCL-BCP scaffolds were approximately 1.3 and 2MPa, respectively. After the PCL infiltration process, the porosity of the PCL-BCP scaffold decreased slightly to 86%, whereas that of the BCP scaffold was 86%. The number of pores in the $10\;{\mu}m$ to $20\;{\mu}m$ rage, which represent the pore channel inside of the strut, significantly decreased. The in-vitro study confirmed that the PCL-infiltrated BCP scaffold showed comparable cell viability without any cytotoxic behavior.