• Title/Summary/Keyword: pressure in tube

Search Result 1,951, Processing Time 0.033 seconds

A Study on the Welding Pressure of Billets in the Extru-Bending Process of Hollow Tube (중공튜브의 압출굽힘가공에 있어서 소재결합력에 관한 연구)

  • 김민규;진인태
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.495-502
    • /
    • 2002
  • The welding pressure in extru bending process is affected by the shape of welding chamber of porthole die. It is very important to increase the welding pressure when the tube should be extruded particulary from four billets of the materials. The high circumferential stress of the tube can make the welding pressure increase during the extru-bending. In order to increase the circumferential stress, it is necessary to make the billets pass through the narrow gap between the conical die and the conical plug. This paper describes the welding pressure by the experiments and the analysis with the two types of the chamber. One of them is the chamber between the flat die and straight mandrel, and the other one is the chamber between the conical die and conical plug. The results of the experiments and the analysis shows that the conical chamber makes the welding pressure increase by the effect of the reducing diameter of tube and the welding pressure by the conical dic and plug is stronger than the welding pressure by the flat die and straight mandrel.

Heat Transfer Characteristics of R-407C During Condensing Inside Horizontal Smooth and Micro-Fin Tubes (수평 평활관 및 전열촉진관내 대체 냉매 R-407C의 응축 열전달 특성에 관한 연구)

  • Roh, Geonsang;Oh, Hookyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.210-217
    • /
    • 1999
  • This paper reports the experimental results on heat transfer characteristics of R-22 and R-407C(HFC-32/125/134a 23/25/52 wt%) condensing inside horizontal smooth and finned tubes. The test condensers used In the study are double pipe heat exchangers of 7.5 mm ID, 9.5 mm OD smooth tube, and 60 finned micro-fin tube with 8.53 mm ID, 9.53 mm OD. Each of these tubes was 4 000 mm long tubes connected with an U-bend. These U type two-path test tubes are divided In 8 local test sections for the identification of the local condensing heat transfer characterisitcs and pressure drop, U-bend effects on condensing flows. Inlet quality is maintained 1.0, and refrigerant mass velocity is varied from 102.0 to $301.0kg/m^2{\cdot}s$. From the results, it was found that the pressure drop of the R-407C Increased, and heat transfer coefficient decreased compared to those of R-22. In comparison condensing heat transfer characteristics of micro-fm tube with those of smooth tube, increasing of condensing heat transfer coefficient was found outstanding compared to the increasing ratio of pressure drop. Furthermore, pressure drop In U-bend showed at most a 30 % compared to the total pressure drop in the test section.

Variation of Pressure Loss and IPF Flowing Ice Slurry in Straight Tube Inclined to Various Angle (다양한 각도로 기울어진 직관내에서 아이스슬러리 유동시 압력손실과 IPF 변화)

  • Kim Kyu-Mok;Park Ki-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1028-1034
    • /
    • 2004
  • Recently, the ice storage system using ice slurry has been used increasingly since it has been introduced where the rapid cooling load change is required. Because it overcomes a decrease of the melting performance and an increase of the thermal resistance on the ice layer in static ice thermal storage system. This study is performed to understand the effects of transporting ice slurry through horizontal, vertical and inclined tubes ($30^{\circ},\;45^{\circ}$). It used propylene glycol-water solution and ice particles (diameter of about 2 mm) in this experiment. The experiments were carried out under various conditions, with concentration of water solution ranging from 0 to $20wt\%$, and velocity of water solution at the entry ranging from 1.5 to 2.5 m/s. The results were as follows: Regarding the angle of inclined tube, the highest pressure loss was measured for vertical tube and the pressure loss for $45^{\circ},\;30^{\circ}$, horizontal straight tubes were lower successively. The lowest pressure loss in these tubes was measured at velocity of $2.0{\sim}2.5m/s$ and concentration of $10wt\%$. The outlet IPF was likewise stable in these ranges.

Experimental Study of Micro-Shock Tube Flow (Micro-Shock Tube 유동에 대한 실험적 연구)

  • Park, Jin-Ouk;Kim, Gyu-Wan;Rasel, Md. Alim Iftakhar;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.385-390
    • /
    • 2015
  • The flow characteristics in micro shock tube are investigated experimentally. Studies were carried out using a stainless steel micro shock tube. Shock and expansion wave was measured using 8 pressure sensors. The initial pressure ratio was varied from 4.3 to 30.5, and the diameter of tube was also changed from 3mm to 6mm. Diaphragm conditions were varied using two types of diaphragms. The results obtained show that the shock strength in the tube becomes stronger for an increase in the initial pressure ratio and diameter of tube. For the thinner diaphragm, the highest shock strength was found among varied diaphragm condition. Shock attenuation was highly influenced by the diameter of tube.

Flaw Assessment Method of Pressure Tube in CANDU Reactor

  • Kim, Jung-Gyu;Na, Bok-Gyun;Hwang, Jong-Keun;Park, Keon-Woo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.291-295
    • /
    • 1996
  • In CANDU reactor, each pressure tubes contain twelve fuel bundles and provide the inlet and outlet for the primary coolant. If a leak develops in the pressure tube, it is detected by Annulus Gas System which contains circulating dry $CO_2$ gas. Since the leaks caused by the flaws are resulted in pressure tube break, establishment of flaw assessment method is very significant in view of the fracture mechanics. In this paper, various criteria for assessing the flaws are presented to prevent the tube rupture and ensure the integrity of reactor operating.

  • PDF

Experimental investigation on the high frequency flow-induced vibration and pressure drop of cylindrical tube bundle with plate type supporting structures (플레이트형 지지구조체로 지지된 실린더형 관 군의 고주파 유동유발진동 및 압력손실에 대한 실험적 고찰)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho;Eom, Kyong-Bo;Kim, Jin-Sun;Suh, Jung-Min
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1367-1372
    • /
    • 2008
  • A plate type supporting structure of a tube bundle in axial flow generates a certain band of a high frequency periodic excitation of a vortex shedding and/or a flow separation due to sharp edge of the plate thickness and a severe pressure drop due to a cross-sectional area of the supports. With a design consideration of the low vibration and a small flow resistance, the analysis method is uniquely confined to an experimental approach because a complex geometry of a cylindrical tube bundle and/or physical phenomena related to the fluid-structure interaction of tube bundle in a flow impede a theoretical or a numerical approach. A 5x5 cylindrical tube bundle with 5 supports which were discretely located along the bundle's axis was tested in the FIVPET hydraulic test loop for a design evaluation and an analysis perspectives. A high frequency flow-induced vibration of the supporting structures of the cylindrical tube bundle was measured at a outer surface of a supporting structure through a transparent flow housing by the laser dopper vibrometer. Pressure drop in-between three measurement distances was measured by the differential pressure transmitter. High frequency vibration and pressure drop fairly depends on the geometric design of supporting structure. So, these two parameters would be used as a qualitative design variables for design evaluation and analysis.

  • PDF

Stress and strain behavior investigation on a scale model geotextile tube for Saemangeum dike project

  • Kim, Hyeong-Joo;Lee, Kwang-Hyung;Jo, Sung-Kyeong;Jamin, Jay C.
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.309-325
    • /
    • 2014
  • Geotextile tubes are basically a huge sack filled with sand or dredged soil. Geotextile tubes are made of permeable woven or non-woven synthetic fibers (i.e., polyester or PET and polypropylene or PP). The geotextile tubes' performances in strength, dewatering, retaining solid particles and stacked stability have been studied extensively in the past. However, only little research has been done in the observation of the deformation behavior of geotextile tubes. In this paper, a large-scale apparatus for geotextile tube experiment is introduced. The apparatus is equipped with a slurry mixing station, pumping and delivery station, an observation station and a data station. For this study the large-scale apparatus was utilized in the studies regarding the stresses on the geotextile and the deformation behavior of the geotextile tube. Model tests were conducted using a custom-made woven geotextile tubes. Load cells placed at the inner belly of the geotextile tube to monitor the total soil pressure. Strain gauges were also placed on the outer skin of the tube to measure the geotextile strain. The pressure and strain sensors are attached to a data logger that sends the collected data to a desktop computer. The experiment results showed that the maximum geotextile strain occurs at the sides of the tube and the soil pressure distribution varies at each geotextile tube section.

Hydroforming Characteristics of Double Layered Tube (이중튜브의 액압 성형특성 연구)

  • Kwon, S.O.;Yi, H.K.;Chung, G.S.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.567-574
    • /
    • 2007
  • Double layered tube is assembled with an inner tube and an outer tube, similar in material or not, contacting closely and deforming simultaneously when subjected to external force. For the manufacturing of double layered tube, the hydroforming assembly technology has several advantages. Therefore in this study, hydroforming characteristics of double layered tube was investigated. The free bulge test was performed to produce formability diagrams of double layered tubes at various forming pressure and feeding amounts. The hexagonal shape hydroforming test was also performed to estimate the dimensional accuracies of double layered tube through the corner filling ratio and the gap between inner and outer tube. Besides experimental analyses, the analytical model that can predict internal pressure for the hydroforming of double-layered tube was proposed and experimentally validated.

A Study on Applying Array Probe for Steam Generator Tube Inspection (배열형 탐촉자를 이용한 증기발생기 세관 검사 적용성 검토)

  • Kim, In Chul;Cheon, Keun Young;Lee, Young Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • Steam Generator(SG) tube is an important component of Nuclear Power Plant(NPP), which comprises of the pressure boundary of primary system. The integrity of SG tube has been confirmed by the eddy current test every outage. In Korea, Bobbin probe and MRPC probe have been generally used for the eddy current test. Meanwhile the usage of Array probe has gradually increased in U.S., Japan and other countries. In this study, we investigated the defect detection capability of the Array probe through its preliminary application to SG tube inspection. The Array probe has the equivalent capability in the defect detection and sizing as the conventional methods. Thus it is desirable that the Array probe is generally applied to SG tube inspection in the domestic NPPs.

  • PDF

Parametric Study on the Capacity of Vacuum Pump for Tube Structure (튜브열차 구조물의 진공 펌프 용량에 관한 파라메타 연구)

  • Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.516-520
    • /
    • 2010
  • Parametric study has been conducted to calculate the capacity of vacuum pump system that will be used to maintain the pressure of the tube structure under atmosphere level. Recently many railroad researchers pay attention to the tube train system as one of the super high speed transportation system. To achieve the super high speed, the inside of tube system should be maintained at low pressure level. In the low pressure environment, it is well known that air resistance of train is drastically decreased. Vacuum pump system will be used to make low pressure state for tube structure, exhaust the leakage air and supplement additional vacuum pumping. As results of these studies, we get the lump capacity of vacuum pump for various parameters. These results can be applied to analyze the effects of the reduction of air resistance.