• Title/Summary/Keyword: pressure flow factor

Search Result 656, Processing Time 0.023 seconds

Effects of Kurtosis on the Pressure Flow Factor (Kurtosis 변화에 따른 Pressure Flow Factor에 관한 연구)

  • 강민호;김태완;구영필;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.243-250
    • /
    • 2000
  • In the partial lubrication regime, the roughness effects are most important due to the presence of interacting asperities. An average Reynolds equation using flow factors is very useful to determine effects of surface roughness on partial lubrication. In this paper, the pressure flow factors for Gaussian and non-Gaussian surfaces are evaluated in terms of kurtosis. The effect of kurtosis on pressure flow factor is investigated using random rough surface generated numerically. The pressure flow factor increases with increasing kurtosis in partial lubrication regime(h/$\sigma$<3). As h/$\sigma$increases, the pressure flow factor approach to 1 asymptotically regardless of kurtosis.

  • PDF

Effects of Kurtosis on the Pressure Flow Factor (Kurtosis 변화에 따른 Pressure Flow Factor에 관한 연구)

  • 강민호;김태완;구영필;조용주
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.448-454
    • /
    • 2000
  • The roughness effects are very important due to the presence of interacting asperities in partial lubrication regime. An average Reynolds equation using flow factors is very useful to determine the effects of surface roughness on mixed lubrication. In this paper, the pressure flow factors for surfaces having Gaussian and non-Gaussian distribution of roughness height are evaluated in terms of various kurtosis. The effect of kurtosis on pressure flow factors is investigated using random rough surface generated numerically. The pressure flow factor increases with increasing kurtosis in mixed lubrication regime (h/$\sigma$<3). As h/$\sigma$ increases, the pressure flow factors approach to 1 asymptotically regardless of kurtosis.

Investigation on the pressure drop characteristics of oscillating flow through regenerators under pulsating pressure conditions (맥동압력조건에서 재생기를 통한 왕복유동의 압력강하 특성에 대한 연구)

  • 최성열;남관우;정상권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.51-57
    • /
    • 2003
  • This paper proposes a new oscillating flow model of the pressure drop through the regenerator under pulsating pressure. In this oscillating flow model. pressure drop is expressed by the amplitude and the phase angle with respect to the inlet mass flow rate. In order to generalize the oscillating flow model. non-dimensional parameters, which are Reynolds number, Valensi number, gas domain length ratio, oscillating flow friction factor and phase angle of pressure drop, are derived from the capillary tube model of the regenerator. Correlations for the oscillating flow friction factor and the phase angle are obtained from the experiments for the twill-square screen regenerators under various operating frequencies and inlet mass flow rates. The oscillating friction factor is a function of the Reynolds number alone and the phase angle of pressure drop is a function of the Valensi number and the gas domain length ratio. Experiment is also performed to examine the effect of the weave style of screen. Experimental data demonstrate the superiority of the oscillating flow model over the previous steady flow model.

A Study on Pressure Distribution, Wall Shear Stress and Friction Factor of Developing Turbulent Pulsating Flows in a Square Duct(Ⅰ), -Experimental Analysis- (정4각단면덕트의 입구영역에서 난류맥동유동의 압력분포, 전단응력분포와 관마찰계수에 관한 연구(Ⅰ), - 실험해석-)

  • Park, Gil-Mun;Cho, Byeong-Gi;Koh, Yeong-Ha;Bong, Tae-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.58-67
    • /
    • 1996
  • In the present study, the pressure distribution, wall shear stress distribution and friction factor of developing turbulent pulsating flows are investigated theoretically and experimentally in the entrance region of a square duct. The pressure distribution for turbulent pulsating flows are in good agreement with the theoretical values. The time-averaged pressure gradients of the turbulent pulsating flows show the same tendency as those of turbulent steady flows as the time-averged Reynolds number $(Re_{ta})$ increase. Mean shear stresses in the turbulent pulsating flow increase more in the inlet flow region than in the fully developed flow region and approach to almost constant value in the fully developed flow region. In the turbulent pulsating flow, the friction factor of the quasi-steady state flow $({\lambda}_{q, tu})$ follow friction factor's law in turbulent steady flow. The entrance length of the turbulent pulsating flow is not influenced by the time-averaged Reynolds number $(Re_{ta})$ and it is about 40 times as large as the hydraulic diameter.

  • PDF

Investigation on the pressure drop characteristics of oscillating flow through regenerator under pulsating pressure conditions (맥동압력조건에서 재생기를 통한 왕복유동의 압력강하 특성에 대한 연구)

  • 최성열;남관우;정상권
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.21-27
    • /
    • 2003
  • This paper proposes a new model of the pressure drop for more accurate description of oscillating flow through regenerator under pulsating pressure conditions in contrast to an existing model based on steady flow. For the universal uses of the oscillating flow model, non-dimensional parameters, which consist of Reynolds number, Valensi number gas domain length ratio, oscillating flow friction factor and phase angle of pressure drop, are derived from the capillary tube model of the regenerator. Two correlation equations of the model are obtained from the experiments for the twill square screen regenerators under various operating frequencies and inlet mass flow rates. The oscillating friction factor is a function of only the Reynolds number and the phase angle of pressure drop is a function of the Valensi number and the gas domain length ratio. Experiment is also performed to examine the effects of the shape of screens.

  • PDF

A Study on the Design of Liquid Flow Control Valves for the Pants and Ships(II) (플랜트 및 선박의 액체용 우량제어밸브 설계에 관한 연구(II))

  • 최순호;배윤영;김태한;한기남;주경인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 1995
  • The processing paper has devoted to the theory of the flow equations, the basic derivative procedure, the meaning of a valve flow coefficient $C_v$, the valve Reynolds R$R_{ev}$ and its application for liquid control valves, which applicable under the condition of a non-critical flow and the case of piping geometry factor $F_p$=1.0. However there is no information on the effects of fittings, a critical flow and the flow resistance coefficient of a valve equivalent to that of pipe which is conveniently used in the piping design. Since the piping systems of plants or ships generally contain various fittings such as expanders and reducers due to different size between pipes and valves and there may occur a critical flow, that a mass flowrate is maintained to be constant, due to the pressure drop in a piping when a liquid is initially maintainder ar a saturated temperature or at nearby corresponding to upstream pressure, system designer should have a knowledge of the effect to flow due to fittings and the critical flow phenomenon of a liquid. This study is performed to inform system designers with the critical flow phenomenon of a liquid, a valve resistance coefficient, a valve geometry factor and their applications.

  • PDF

Heat Transfer Coefficient and Shear Factor Subjected to Both Oscillating Flow and Oscillating Pressure in Pulse Tubes (주기적인 유동과 압력의 변화를 수반하는 맥동관의 열전달계수와 전단계수)

  • Jeong, Eun-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.220-227
    • /
    • 2007
  • Heat transfer and momentum transfer under conditions of both oscillating flow and oscillating pressure within pulse tubes show very different behavior from those for steady state conditions. The analytic solutions of axial velocity and temperature of the gas within pulse tubes were obtained by assuming that the variations in pressure and temperature were purely sinusoidal and small. The shear stress and the heat flux at the tube wall obtained from the solutions are expressed in terms of the cross-sectional averaged velocity, the difference between mean temperature and instantaneous cross-sectional averaged temperature and the difference between mean pressure and instantaneous pressure. It is shown that the complex shear factor, which has been applied to momentum transfer of incompressible oscillating flow, and the complex Nusselt number, which has been applied to either heat transfer with oscillating pressure only or heat transfer of incompressible oscillating flow, could also be used for momentum transfer and heat transfer subjected to both oscillating flow and oscillating pressure, respectively.

Prediction of Flow Behavior and Pressure Drop of Spirally Corrugated Steel Pipe (나선형 파형강관에서의 유동특성 및 압력강하 예측)

  • Park Jong-Hark
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.18-22
    • /
    • 2004
  • Numerical investigation has been conducted to figure out flow behavior and pressure drop characteristics of spirally corrugated steel pipe which is widely used in civil, industrial and agricultural field owing to many advantages such as good corrosion resistance and durability, strength, easy and quick installation. Also the poly-ethylene coating spirally corrugated steel pipe has the long life under condition of sea water immerged. In the present study, flow behavior in the spirally corrugated pipe and influence of P/d/sub h/(ratio of wave pitch to hydraulic diameter) to pressure drop are investigated by CFD with various Reynolds number. And also friction factor is estimated by pressure drop obtained by flow analysis. According to computation results, the flow runs spirally up and down along the spiral corrugation in the vicinity of wall, but the effect of spiral corrugation disappears in core region of pipe. As P/d/sub h/ becomes small, more pressure drop occurs in spirally corrugated Pipe. Besides, friction factor augmentation becomes much larger as Re increases. In case of p/d/sub h/=0.38, Pressure drop and friction factor of spirally corrugated pipe are about four times larger than smooth pipe at Re: 1.46×10/sup 6/.

Single and Two-Phase Flow Pressure Drop for CANFLEX Bundle

  • Park, Joo-Hwan;Jun, Ji-Sun;Suk, Ho-Chun;Dimmick, G.R.;Bullock, D.E.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.532-537
    • /
    • 1998
  • Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-l34a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLRX bundle is found to be about 20 % higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within ${\pm}\;5\;%$ error.

  • PDF

Analysis of Pressure Drop Characteristics for the Air-Particle Flow in Powder Transport Piping System (입자수송시스템 내 공기-입자 유동장의 압력손실 특성 해석)

  • Lee, Jae-Keun;Ku, Jae-Hyun;Kwon, Soon-Hong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.20-26
    • /
    • 2002
  • This study reports the analysis of the pressure drop characteristics for the air-particle flow in powder transport piping system. The pressure drop characteristics of air-particle flow in piping system is not well understood due to the complexity of particles motion mechanism. Particles or powders suspended in air flow cause the increase of the pressure drop and affect directly the transportation efficiency. In this study, the pressure drop in powder transport piping system with straight and curved pipes is analyzed for the interactions of air flow and particle motion. The total pressure drop increases with increasing of the pipe length, the mixture ratio, and the friction factor of particles due to the increasing friction loss by air and particles in a coal piping system. For the coal powders of $74{\mu}m$ size and powder-to-air mass mixture ratio of 0.667, the total pressure drop by the consideration of powders and air flow is $30\%$ higher than that of air flow only.