• 제목/요약/키워드: pressure field

검색결과 3,772건 처리시간 0.028초

도로 종단선형에 따른 도로교통 소음 특성 분석 (Characteristic of Road Traffic Noise According to Road Vertical Alignment)

  • 문학룡;한대철;강원평
    • 한국도로학회논문집
    • /
    • 제15권4호
    • /
    • pp.95-105
    • /
    • 2013
  • PURPOSES: The purpose of this study is to research the influence of road traffic noise by road slope through the analysis of the field road traffic noise and determine consideration of road slope in the case of appling active noise cancellation. METHODS: This study measures vehicle's noise by the NCPX method at the three field sections such as uphill, downhill, and flatland. Total sound pressure and sound pressure level by the 1/3 octave band frequency are calculated through the raw field data. Total sound pressure level is compared by ANOVA test and T test statistically. The results obtained are compared in accordance with the road slope and the progress of the uphill section. RESULTS : The noise characteristic of early, medium, and last parts of uphill was found to be consistent when the vehicle was travelling uphill section. The result of statistical test, it was shown that total sound pressures are not different each other. According to the comparison by the geometry, sound pressure of the uphill section was higher than those of the flatland and downhill section in high frequency band. By the result of statistical test, total sound pressure are different according to geometry in the case of high vehicle speed. In the comparison result by road slope, each sound pressure level was found to be consistent in total frequency. However, total sound pressure proportionally increased according to road slope. CONCLUSIONS: It is found that the effect of road slope on noise generation was little in this experimental sites.

근접 음향 홀로그래피에서 음압 측정용 마이크로폰의 근접 거리 한계 (Near-field limit in positioning the microphone for pressure measurements in using the near-field acoustical holography)

  • 강승천;이정권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.731-736
    • /
    • 2000
  • The recently developed BEM-based NAH(nearfield acoustical holography) is a useful technique for identifying the sound source of vibrating objects. The acoustic parameters of a sound source can be reconstructed by using the vibro-acoustic transfer matrix, which is determined by means of BEM, and the sound pressure measured in the nearfield. Theoretically, one can come up with a very nice reconstructed result as the field plane gets near to the source surface. However, when a microphone is placed in the very close nearfield of the source surface, the scattering, reflection, or resonance in the gap between the source and the microphone can distort the acoustic field, and therefore, the measured field pressure would differ from the actual one in the absence of the microphone. In order to analyze this problem, the interference effect of the microphone is numerically calculated by using the nonsingular BEM that yields very small error in the nearfield. From this analysis, it is found that the prediction error of the field pressure decreases firstly and then increases as the microphone approaches the vibrating surface from the farfield to the close nearfield. It is noted that the microphone should be separated from the source surface by at least a diameter of the microphone for an error ratio less than 2% in the low frequency range less than about 2.7kHz. This means that if one wants to put a microphone in the very close nearfield. a microphone with small diameter should be used.

  • PDF

철도시스템 전산유체해석 표준 프레임웍을 이용한 KTX 차량 주변 압력장에 대한 수치해석 (A Numerical Analysis on the Pressure Field Around KTX Train Using the Standard Framework of CFD Analysis for Railway System)

  • 남성원;차창환;권혁빈
    • 한국철도학회논문집
    • /
    • 제9권5호
    • /
    • pp.511-516
    • /
    • 2006
  • A standard framework of CFD(Computational Fluid dynamics) analysis for railway system has been developed to evaluate the overall aerodynamic performance of railway system and has been adopted to numerical simulation of the pressure field around KTX train. The framework is composed of standard aerodynamic model and standard aerodynamic performance to customize the general CFD solution process reflecting the characteristics of railway system such as various operation mode and performance factors. The results show that the standard framework of CFD analysis for railway system can provide objectivity and consistency to the CFD analysis for railway system and the pressure field around KTX train has been successively solved.

APPLICATION OF SOUND INTENSITY METHOD TO NOISE CONTROL ENGINEERING AND BUILDING ACOUSTICS

  • Tachibana, Hideki
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 추계학술대회논문집; 한국종합전시장, 24 Nov. 1995
    • /
    • pp.7-15
    • /
    • 1995
  • Sound pressure and particle velocity are the most essential quantities prescribing a sound field; they correspond to voltage and electric current respectively, in electric system. As electric power is the product of voltage and electric current, sound intensity is the product of sound pressure and particle velocity and it means the acoustic power passing through a unit area in a sound field. Although the definition of sound intensity is very simple as mentioned above, the method of measuring this quantity has not been realized for a long time, because it has been very difficult to measure the particle velocity simultaneously with the sound pressure. Owing to the recent development of such technologies as transducer production and digital signal processing, it has finally been realized. According to the sound intensity(SI) method, the sound power flow in an arbitrary sound field can be directly measured as a vector quantify. In this paper, the principle of the SI method is briefly explained at first and some examples of its application made in the author's laboratory are introduced.

  • PDF

타원형 저어널 베어링의 동특성 해석에 관한 연구 (A Study on Dynamics Characteristic Analysis of Elliptical Journal Bearing)

  • 박성환;오택열
    • 한국정밀공학회지
    • /
    • 제19권7호
    • /
    • pp.20-27
    • /
    • 2002
  • An analysis model for an elliptical fluid film bearing is described. The principles of hydrodynamic lubrication are outlined together with an expanded version of the governing pressure field equation as related to elliptical journal bearing. Finite element method approximations are given for the pressure field equation and a temperature model, both related to the fluid film thickness. The thermal effects in the lubricant viscosity, lubricant film thickness, variation of the journal rotating speed and influence of turbulence are investigated in this paper A finite element model and an iterative computational process are described, whereby full simultaneously converged field solutions for fluid film thickness, temperature, viscosity, pressure, stiffness and damping coefficient are obtained.

곡관의 곡률이 열유동장에 미치는 영향 (The effect of the curvature of pipe on the thermal-flow field)

  • 김성준;현성호;홍진기;민인홍
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.261-268
    • /
    • 1999
  • It is a main object to find out the effect of curvature of pipe on the thermal flow field in copper pipe. the toroidal coordinate system is chosen for this project. 3-D numerical works are done by a commercial code, PHOENICS. The flow and temperature field are simulated and analysed on the view point of variation of pressure and temperature with Dean number. The results show that the strong recirculation phenomena and secondary flow are established and then a lot of pressure drop along main flow direction occurs at the curved portion of pipe and the temperature variation has a reversed trend of pressure variation along the axis of pipe.

  • PDF

ER유체의 유동특성에 관한 실험적 연구 III (평행평판 간극내의 유량-압려강하 특성) (Experimental Investigation on the Flow Characteristics of ER Fluids III (3nd Report, Flow-Pressure Drop Characteristics clearance between Two Parallel Plate))

  • 김도태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.399-404
    • /
    • 1999
  • Electro-rheological(ER) fluids are suspensions which show an abrupt increase in rheological properties under electric fields. The rheological response is very rapid and reversible when the electric field is imposed and/or removed. Therefore, there are many practical applications using the ER fluids. The purpose of the present study is to examine the flow characteristics of electro-rheological fluids. The field-dependent yield stress are obtained from experimental investigation on the Bingham property of the ER fluid. Then the steady relationshup between pressure drop and flow rate of the ERF was two fixed parallel-plates was measured under application of an electric fields. The electrical and rheological properties of zeolite based electro-rheological fluids were reported.

  • PDF

고온.고압용 3-way 볼밸브의 특성해석 (A Characteristic Analysis of High Pressure and High Temperature 3-way Ball Valve)

  • 이준호
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.180-184
    • /
    • 2012
  • 3-way ball valves have been mostly used for high temperature/high pressure valves using in petrochemical carriers and oil tankers, which requires high quality products with confidentiality and durability. As a larger disaster may be generated by leakage of oil or gas from valves, thus the present research applied a numerical analysis method with thermal-structural coupled field analysis and the performance test. The Max stress by parts was confirmed through thermal-structural coupled field analysis and develop the 3-way ball valve design, which is safe on operating condition. And its performance was verified by carrying out pressure test, leakage test and durability test for the manufactured 3-way ball valves with satisfying it's regulations.

원심압축기 유동해석 및 소음예측에 관한 연구 (Flow-field Analysis and Noise Prediction of Centrifugal Compressor)

  • 선효성;신인환;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1005-1009
    • /
    • 2002
  • The objective of this research is to suggest the noise prediction method of the centrifugal compressor. It is focused on the Blade Passing Frequency (BPF) component which is regarded as the main part of the rotating impeller noise. Euler solver is used to simulate the flow-field of the centrifugal compressor and time-dependent pressure data are calculated to perform the near-field noise prediction by Ffowcs Williams-Hawkings (FW-H) formulation. Indirect Boundary Element Method (IBEM) is applied to consider the noise propagation effect. Pressure fluctuations of the inlet and the outlet in the centrifugal compressor impeller are presented and Sound Pressure Level (SPL) prediction results are compared with the experimental data.

  • PDF

음향 홀로그래피를 이용한 다수의 완전 비상관 소음원들의 가시화 (Visualization of Multiple Incoherent Sources Using Nearfield Acoustic Holography)

  • 남경욱;김양한
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.922-927
    • /
    • 1999
  • The objective of this paper is to obtain the contribution of each source to the spectrum of pressure, when there are multiple incoherent sources in near-field acoustic holography. For this objective, we have to obtain signals very coherent to the input signals of the sources. To obtain the very coherent signals, many people have measured pressure signals in the vincinity of the sources. However, it is sometimes difficult to locate microphones near to the sources so that the signals are very coherent to the input signals. This paper proposed a method to obtain the very coherent signals by near-field acoustic holography. Therefore, the proposed method does not require the measurement of pressure near to each source. Simulation results for two incoherent monopole sources showed the possibility of the proposed method.

  • PDF