• Title/Summary/Keyword: pressure evolution

Search Result 372, Processing Time 0.021 seconds

A Mini Review of Recent Advances in Optical Pressure Sensor

  • Gihun Lee;Hyunjin Kim;Inkyu Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • Innovative and advanced technologies, including robots, augmented reality, virtual reality, the Internet of Things, and wearable medical equipment, have largely emerged as a result of the rapid evolution of modern society. For these applications, pressure monitoring is essential and pressure sensors have attracted considerable interest. To improve the sensor performance, several new designs of pressure sensors have been researched based on resistive, capacitive, piezoelectric, optical, and triboelectric types. In particular, optical pressure sensors have been actively studied owing to their advantages, such as robustness to noise and remote sensing capability. Herein, a review of recent research on optical pressure sensors with self-powered sensing, remote sensing, high spatial resolution, and multimodal sensing capabilities is presented from the viewpoints of design, fabrication, and signal processing.

Modeling of Microstructural Evolution in Squeeze Casting of an Al-4.5wt%Cu Alloy (용탕단조시 Al-4.5%Cu합금의 조직예측)

  • Cho, In-Sung;Hong, Chun-Pyo;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.550-555
    • /
    • 1996
  • A stochastic model, based on the coupling of the finite volume(FV) method for macroscopic heat flow calculation and a two-dimensional cellular automaton(CA) model for treating microstructural evolution was applied-for the prediction of microstructural evolution in squeeze casting. The interfacial heat transfer coefficient at the casting/die interface was evaluated as a function of time using an inverse problem method in order to provide a quantitative simulation of solidification sequences under high pressure. The effects of casting process variables on the formation of solidification grain structures and on the columnar to equiaxed transition of an Al-4.5wt%Cu alloy in squeeze casting were investigated. The calculated solidification grain structures were in good agreement with those obtained experimentally.

  • PDF

Effect of rotation on the evolution of Population III protostars

  • Lee, Hunchul;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.81.2-81.2
    • /
    • 2014
  • To figure out the effect of rotation on the final mass of Pop III stars, 1D stellar evolution simulations of the evolution of mass-accreting protostars are performed, with zero metalicity and high constant mass accretion rates. The protostar reaches the Keplerian rotation very soon after the onset of mass accretion, but it may continue mass accretion via angular momentum transport induced by viscous stress or magnetic field. However, as the accreting star evolves, the envelope expands rapidly when the total mass reaches $5{\sim}6M_{\odot}$ and the corresponding Eddington factor sharply increases. Strong radiative pressure with rotation imposes different criteria for breakup at the stellar surface, and the so-called 'critical rotation (${\Omega}{\Gamma}$-limit)' is reached. As a result mass accretion rate has to be significantly lowered. This implies that characteristic masses of Pop III stars would be significantly lowered than the previous expectation.

  • PDF

Fabrication of Fiber-Reinforced Composites by High Pressure Self-Combustion Sintering Method (고압 자전연소 소결법을 이용한 섬유강화 복합체의 제조)

  • 방환철;고철호;임동원;김봉섭;최태현;윤존도
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.444-452
    • /
    • 2000
  • Dense composites of titanium matrix and Al2O3 matrix with reinforcements of carbon or titanium carbide fibers were successfully fabricated by high-pressure self-combustion sintering method or combustion reacton under 30 MPa of uniaxial pressure with an aid of external heating in vaccum. It was found that the fibers were uniformly distributed in the matrix, and aligned in a phase perpendicular to the pressure axis. As a moel ratio of Ti/C or reaction time increased, the density of Ti-matrix composite increased Micro pores around fibers could be removed by using clean carbon fibers without sizing agent on their surface. The evolution of carbide fibers from carbon fibers was observed. The composition of the various phases around fibers were analyzed.

  • PDF

Flow Characteristics in a Clean Room after Divisional Filter Exchange (부분적인 필터교체에 따른 청정실내부의 유동특성)

  • 이재헌;박명식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2110-2121
    • /
    • 1993
  • A numerical investigation has been carried out for the flow characteristics after exchange of some filters from the original layer to the new low pressure loss layer with equal filtering efficiency. The solution domain includes upper plenum, filter layer, clean space, access panels, and lower plenum. The concept of the distributed pressure resistance was applied to describe the momentum loss in filter layer and access panels. The evolution of the flow field is simulated using the low Reynolds number k-.epsilon. over bar turbulent model and SIMPLE algorithm based on the finite volume method. As a result, after the exchange of filter layer the power requirement can be reduced by 8-9 percent. The results also demonstrate that the perpendicularity of the flow near access panels may become worse at new filter layer than origianl filter layer. But the situation can be recovered by adjusting the jopening ratio of access panels.

Numerical Analysis for a Simple Shape Silencer for Intensity Diminution of High Pressure Blast Flow Fields (고압 폭발 유동장의 강도 감소를 위한 간단한 형상의 소음기에 대한 수치해석)

  • Ko S. H.;Woo S. D.;Kang K. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.91-94
    • /
    • 2004
  • A numerical analysis was made to investigate the intensity diminution of a simple silencer for high pressure blast flow fields. Reynolds-Averaged Wavier-Stokes equations were solved for an axisymmetric computational domain constructed by multi block Chimera grids. A blast flow field without the silencer was also calculated to validate the present numerical method. The evolution of high pressure blast flow fields was observed by depicting calculated contours of pressure and Mach number. It was found that the tested silencer could achieve 76 percent intensity diminution.

  • PDF

Pressure Control of Electro-Hydraulic Variable Displacement Pump Using Genetic Algorithms (GA를 이용한 전기유압식 가변펌프의 압력제어)

  • 안경관;현장환;조용래;오범승
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.48-55
    • /
    • 2004
  • This study presents a genetic algorithm-based method fur optimizing control parameters in the pressure control of electro-hydraulic pump with variable displacement. Genetic algorithms are general-purpose optimization methods based on natural evolution and genetics and search the optimal control parameters maximizing a measure that evaluates the performance of a system. Four control gains of the PI-PD cascade controller for an electro-hydraulic pressure control system are optimized using a genetic algorithm in the experiment. Optimized gains are confirmed by inspecting the fitness distribution which represents system performance in gain spaces. It is shown that genetic algorithm is an efficient scheme in optimizing control parameters of the pressure control of electro-hydraulic pump with variable displacement.

Movement and evolution of macromolecules in a grooved micro-channel

  • Zhou, L.W.;Liu, M.B.;Chang, J.Z.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.157-172
    • /
    • 2013
  • This paper presented an investigation of macromolecular suspension in a grooved channel by using the dissipative particle dynamics (DPD) with finitely extensible non-linear elastic (FENE) bead spring chains model. Before studying the movement and evolution of macromolecules, the DPD method was first validated by modeling the simple fluid flow in the grooved channel. For both simple fluid flow and macromolecular suspension, the flow fields were analyzed in detail. It is found that the structure of the grooved channel with sudden contraction and expansion strongly affects the velocity distribution. As the width of the channel reduces, the horizontal velocity increases simultaneously. Vortices can also be found at the top and bottom corners behind the contraction section. For macromolecular suspension, the macromolecular chains influence velocity and density distribution rather than the temperature and pressure. Macromolecules tend to drag simple fluid particles, reducing the velocity with density and velocity fluctuations. Particle trajectories and evolution of macromolecular conformation were investigated. The structure of the grooved channel with sudden contraction and expansion significantly influence the evolution of macromolecular conformation, while macromolecules display adaptivity to adjust their own conformation and angle to suit the structure so as to pass the channel smoothly.

Spatial Structure and Dynamic Evolution of Urban Cooperative Innovation Network in Guangdong-Hong Kong-Macao Greater Bay Area, China: An Analysis Based on Cooperative Invention Patents

  • HU, Shan Shan;KIM, Hyung-Ho
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.9
    • /
    • pp.113-119
    • /
    • 2021
  • With the increasing pressure of international competition, urban agglomeration cooperation and innovation had become an important means of regional economic development. This study analyzed the spatial characteristics of the Urban Cooperative Innovation Network in Guangdong-Hong Kong-Macao Greater Bay Area, found out the dynamic evolution law of innovation, provided suggestions for policy management departments, and effectively planned the industrial layout. According to the data of the State Intellectual Property Office of China, this study researched invention patents from 2005 to 2019. This paper constructed the urban cooperative innovation network, and took 11 cities in the bay area as the research objects, and used social network analysis to study the spatial structure and dynamic evolution of the urban innovation network. Every indicator reflected the urban cooperative innovation, but they all showed a certain decline in 2008-2010. And it is inferred that the innovation network space of each city will be "obvious fist advantages, significant spillover effect and weakening role of Hong Kong and Macao". This paper divided urban cooperative innovation of Guangdong-Hong Kong-Macao Greater Bay Area into three stages. Summing up the characteristics of each stage is helpful to recognize the changes of urban cooperative innovation and to do a good job in industrial layout planning.

Computation of Pressure Fields for a Hybrid Particle-Mesh Method (하이브리드 입자-격자 방법에서의 압력장 계산)

  • Lee, Seung-Jae;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.328-333
    • /
    • 2014
  • A hybrid particle-mesh method based on the vorticity-velocity formulation for solving the incompressible Navier-Stokes equations is a combination of the Vortex-In-Cell(VIC) method for convection and the penalization method for diffusion. The key feature of the numerical methods is to determine velocity and vorticity fields around a solid body on a temporary grid, and then the time evolution of the flow is computed by tracing the convection of each vortex element using the Lagrangian approach. Assuming that the vorticity and velocity fields are to be computed in time domain analysis, pressure fields are estimated through a complete set of solutions at present time step. It is possible to obtain vorticity and velocity fields prior to any pressure calculation since the pressure term is eliminated in the vorticity-velocity formulation. Therefore, pressure field is explicitly treated by solving a suitable Poisson equation. In this paper, we propose a simple way to numerically implement the vorticity-velocity-pressure formulation including a penalty term. For validation of the proposed numerical scheme, we illustrate the early development of viscous flows around an impulsive started circular cylinder for Reynolds number of 9500.