• Title/Summary/Keyword: pressure evolution

Search Result 372, Processing Time 0.022 seconds

Reassessment of the Pyeongan Supergroup: Metamorphism and Deformation of the Songrim Orogeny (평안누층군의 재조명: 송림 조산운동의 변성작용과 변형작용)

  • Kim, Hyeong Soo
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.367-379
    • /
    • 2019
  • Pyeongan Supergroup (PS) in the Taebaeksan basin preserves key geological evidences to understand the tectonometamorphic evolution of the Songrim orogeny that affected the formation of the Korean Peninsula during the late Paleozoic to early Mesozoic. The aims of this paper therefore are to investigate the characteristics of the Songrim orogeny based on the previous results of metamorphism and deformations of the PS, and then to review geological significance and research necessity of the PS. Age distributions and Th/U ratio of detrital zircon in the PS indicate that sedimentary environment of the Taebaeksan basin during the late Paleozoic was arc-related foreland basin and retro-arc foreland basin at the active continental margin. In addition, the main magmatic activities occurred in the early Pennsylvanian and Middle Permian, thus sedimentation and magmatic activities occurred simultaneously. The PS was affected by lower temperature-medium pressure (M1) and medium temperature and pressure (M2) regional metamorphism during the Songrim orogeny. During M1, slate and phyllite containing chloritoid, andalusite, kyanite porphyroblasts intensively deformed by E-W bulk crustal shortening combined with folding and shearing. And garnet and staurolite porphyroblasts were formed during the N-S bulk crustal shortening accompained by M2. Such regional metamorphism of the PS is interpreted to occur in an area where high strain zone is localized during ca. 220-270 Ma. In order to elucidate the evolution of the Taebaeksan basin and tectonic features of the Songrim orogeny, it is expected that the study will be carried out such as the regional distribution of metamorphic zones developed in the PS, characteristics and timing of deformations, and late Paleozoic paleo-geography of the Taebaeksan basin.

RANS simulation of secondary flows in a low pressure turbine cascade: Influence of inlet boundary layer profile

  • Michele, Errante;Andrea, Ferrero;Francesco, Larocca
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.415-431
    • /
    • 2022
  • Secondary flows have a huge impact on losses generation in modern low pressure gas turbines (LPTs). At design point, the interaction of the blade profile with the end-wall boundary layer is responsible for up to 40% of total losses. Therefore, predicting accurately the end-wall flow field in a LPT is extremely important in the industrial design phase. Since the inlet boundary layer profile is one of the factors which most affects the evolution of secondary flows, the first main objective of the present work is to investigate the impact of two different inlet conditions on the end-wall flow field of the T106A, a well known LPT cascade. The first condition, labeled in the paper as C1, is represented by uniform conditions at the inlet plane and the second, C2, by a flow characterized by a defined inlet boundary layer profile. The code used for the simulations is based on the Discontinuous Galerkin (DG) formulation and solves the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Spalart Allmaras turbulence model. Secondly, this work aims at estimating the influence of viscosity and turbulence on the T106A end-wall flow field. In order to do so, RANS results are compared with those obtained from an inviscid simulation with a prescribed inlet total pressure profile, which mimics a boundary layer. A comparison between C1 and C2 results highlights an influence of secondary flows on the flow field up to a significant distance from the end-wall. In particular, the C2 end-wall flow field appears to be characterized by greater over turning and under turning angles and higher total pressure losses. Furthermore, the C2 simulated flow field shows good agreement with experimental and numerical data available in literature. The C2 and inviscid Euler computed flow fields, although globally comparable, present evident differences. The cascade passage simulated with inviscid flow is mainly dominated by a single large and homogeneous vortex structure, less stretched in the spanwise direction and closer to the end-wall than vortical structures computed by compressible flow simulation. It is reasonable, then, asserting that for the chosen test case a great part of the secondary flows details is strongly dependent on viscous phenomena and turbulence.

The Tectono-metamorphic Evolution of Metasedimentary Rocks of the Nampo Group Outcropped in the Area of the Daecheon Beach and Maryangri, Seocheon-gun, Chungcheongnam-do (충남 대천해수욕장과 서천군 마량리 지역에 분포된 남포층군 변성퇴적암층의 변성지구조 진화)

  • Song, Yong-Sun;Choi, Jung-Youn;Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • The metasedimentary rocks of the Nampo Croup consisting of metaconglomerates, metasandstones, phyllites are exposed in the area of the Daechcon beach and Maryangri, Seocheon-gun. Their typical metamorphic assemblages of Bt-Mus-Grt-Qtz (${\pm}Pl{\pm}Chl$) and Bt-Mus-Qtz (${\pm}Pl{\pm}Chl$) indicate that they have been under intermediate P/T type metamorphism and were metamorphosed to garnet zone grade of amphibolite-facies during the Daebo Orogeny. Pressure-temperature conditions of peak metamorphism estimated from geothermobarometries are $560{\sim}595^{\circ}C$, $6.9{\sim}8.2\;kb$ respectively. The results of K-Ar biotite age determination are $143.2{\pm}3.6\;Ma$, $122.6{\pm}2.4\;Ma$ and $124.8{\pm}2.4\;Ma$ and the last two ages are considered as the results of later-stage thermal perturbation. On the bases of the formation age of Daedong Supergroup of $187{\sim}172\;Ma$ (Han et al., 2006; Jeon et al., 2007) combined with the results of this study, the hypothetical model of tectonometamorphic evolution of the study area during Daebo Orogeny is proposed. Crustal thickening resulted from folding and duplexing of thrusts in the area initiated at around 175 Ma just after sedimentation of Nampo Croup. And then rapid cooling by normal faulting due to crustal extention followed immediately after the peak metamorphism to the closure temperature of biotite.

Prediction of Soil-Water Characteristic Curve and Relative Permeability of Jumunjin Sand Using Pore Network Model (공극 네트워크 모델을 이용한 주문진표준사의 함수특성곡선 및 상대투수율 예측에 관한 연구)

  • Suh, Hyoung Suk;Yun, Tae Sup;Kim, Kwang Yeom
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.1
    • /
    • pp.55-62
    • /
    • 2016
  • This study presents the numerical results of soil-water characteristic curve for sandy soil by pore network model. The Jumunjin sand is subjected to the high resolution 3D X-ray computed tomographic imaging and its pore structure is constructed by the web of pore body and pore channel. The channel radius, essential to the computation of capillary pressure, is obtained based on the skeletonization and Euclidean Distance transform. The experimentally obtained soil-water characteristic curve corroborates the numerically estimated one. The pore channel radius defined by minimum radii of pore throat results in the slightly overestimation of air entry value, while the overall evolution of capillary pressure resides in the acceptable range. The relative permeability computed by a series of suggested models runs above that obtained by pore network model at high degree of saturation.

Estimation of subsea tunnel stability considering ground and lining stiffness degradation measurements (지반 및 라이닝 열화 계측 정보를 반영한 해저 터널의 안정성 평가)

  • An, Joon-Sang;Kim, Byung-Chan;Moon, Hyun-Koo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.389-399
    • /
    • 2016
  • Efficiency for estimation of subsea tunnel safety can be increased through reflecting back analysis algorithm to displacement measurements besides other measurement information such as stress, water pressure and ground stiffness degradation. In this study, the finite difference code FLAC3D built-in FISH language is used. In addition, the stability of the tunnel lining will be evaluated from the development of displacement-based algorithm and its expanded algorithm with conformity of several parameters such as stress measurements, water pressure measurements, tunnel lining degradation measurements and ground stiffness degradation measurements. By using additional measurement information to assess the stability of subsea tunnel, it was confirmed that the error rate is reduced to the tunnel back analysis.

Study on the Design and Analysis of a 4-DOF Robot for Trunk Rehabilitation (체간 재활을 위한 4-DOF 로봇의 설계 및 분석에 관한 연구)

  • Eizad, Amre;Pyo, Sanghun;Lee, Geonhyup;Lyu, Sung-Ki;Yoon, Jungwon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.41-51
    • /
    • 2020
  • This paper presents the development of a robotic system for rehabilitation of the trunk's ability to maintain postural control under different balance conditions. The system, developed with extensive input from rehabilitation and biomedical engineering experts, consists of a seat mounted on a robotic mechanism capable of moving it with four degrees of freedom (3 rotational and 1 translational). The seat surface has built in instrumentation to gauge the movements of the user's center of pressure (COP) and it can be moved either to track the movements of the COP or according to operator given commands. The system allows two types of leg support. A ground mounted footrest allows participation of legs in postural control while a seat connected footrest constrains the leg movement and limits their involvement in postural control. The design evolution over several prototypes is presented and computer aided structural analysis is used to determine the feasibility of the designed components. The system is pilot tested by a stroke patient and is determined to have potential for use as a trunk rehabilitation tool. Future works involve more detailed studies to evaluate the effects of using this system and to determine its efficacy as a rehabilitation tool.

Comparison of the Wind Speed from an Atmospheric Pressure Map (Na Wind) and Satellite Scatterometer­observed Wind Speed (NSCAT) over the East (Japan) Sea

  • Park, Kyung-Ae;Kim, Kyung-Ryul;Kim, Kuh;Chung, Jong-Yul;Conillor, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • v.38 no.4
    • /
    • pp.173-184
    • /
    • 2003
  • Major differences between wind speeds from atmospheric pressure maps (Na wind) and near­surface wind speeds derived from satellite scatterometer (NSCAT) observations over the East (Japan) Sea have been examined. The root­mean­square errors of Na wind and NSCAT wind speeds collocated with Japanese Meteorological Agency (JMA) buoy winds are about $3.84\;ms^{-1}\;and\;1.53\;ms^{-1}$, respectively. Time series of NSCAT wind speeds showed a high coherency of 0.92 with the real buoy measurements and contained higher spectral energy at low frequencies (>3 days) than the Na wind. The magnitudes of monthly Na winds are lower than NSCAT winds by up to 45%, particularly in September 1996. The spatial structures between the two are mostly coherent on basin­wide large scales; however, significant differences and energy loss are found on a spatial scale of less than 100 km. This was evidenced by the temporal EOFs (Empirical Orthogonal Functions) of the two wind speed data sets and by their two­dimensional spectra. Since the Na wind was based on the atmospheric pressures on the weather map, it overlooked small­scale features of less than 100 km. The center of the cold­air outbreak through Vladivostok, expressed by the Na wind in January 1997, was shifted towards the North Korean coast when compared with that of the NSCAT wind, whereas NSCAT winds revealed its temporal evolution as well as spatial distribution.

Population Analysis of Iranian Potato virus Y Isolates Using Complete Genome Sequence

  • Pourrahim, Reza;Farzadfar, Shirin
    • The Plant Pathology Journal
    • /
    • v.32 no.1
    • /
    • pp.33-46
    • /
    • 2016
  • In this study, the full-length nucleotide sequences of four Iranian PVY isolates belonging to $PVY^N$ strain were determined. The genome of Iranian PVY isolates were 9,703-9,707 nucleotides long encoding all potyviral cistrons including P1, HC-Pro, P3, 6K1, CI, 6K2, VPg, NIa-Pro, NIb and CP with coding regions of 825, 1,395, 1,095, 156, 1,902, 156, 564, 732, 1,557 and 801 nucleotides in length, respectively. The length of pipo, embedded in the P3 cistron, was 231 nucleotides. Phylogenetic analysis showed that the Iranian isolates clustered with European recombinant NTN isolates in the N lineage. Recombination analysis demonstrated that Iranian $PVY^N$ isolates had a typical European $PVY^{NTN}$ genome having three recombinant junctions while $PVY^N$ and $PVY^O$ were identified as the parents. We used dN/dS methods to detect candidate amino acid positions for positive selection in viral proteins. The mean ${\omega}$ ratio differed among different genes. Using model M0, ${\omega}$ values were 0.267 (P1), 0.085 (HC-Pro), 0.153 (P3), 0.050 (CI), 0.078 (VPg), 0.087 (NIa-pro), 0.079 (NIb) and 0.165 (CP). The analysis showed different sites within P1, P3 and CP were under positive selection pressure, however, the sites varied among PVY populations. To the best of our knowledge, our analysis provides the first demonstration of population structure of $PVY^N$ strain in mid-Eurasia Iran using complete genome sequences and highlights the importance of recombination and selection pressure in the evolution of PVY.

Numerical modelling of coupled thermo-hydro-mechanical behavior of Heater Experiment-D (HE-D) at Mont Terri rock laboratory in Switzerland (스위스 Mont Terri rock laboratory에서 수행된 암반 히터시험(HE-D)에 대한 열-수리-역학적 복합거동 수치해석)

  • Lee, Changsoo;Choi, Heui-Joo;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.242-255
    • /
    • 2020
  • The numerical simulations of Heater Experiment-D (HE-D) at the Mont Terri rock laboratory in Switzerland were performed to investigate an applicability of FLAC3D to reproduce the coupled thermo-hydro-mechanical (THM) behaviour in Opalinus Clay, as part of the DECOVLEX-2015 project Task B. To investigate the reliability of numerical simulations of the coupled behaviour using FLAC3D code, the simulation results were compared with the observations from the in-situ experiment, such as temperature at 16 sensors, pore pressure at 6 sensors, and strain at 22 measurement points. An anisotropic heat conduction model, fluid flow model, and transversely isotropic elastic model in FLAC3D successfully represented the coupled thermo-hydraulic behaviour in terms of evolution for temperature and pore pressure, however, performance of the models for mechanical behavior is not satisfactory compared with the measured strain.

Molybdenum Oxides as Diffusion Barrier Layers against MoSe2 Formation in A Nonvacuum Process for CuInSe2 Solar Cells (비진공법 CuInSe2 태양전지에서 MoSe2의 생성을 억제하기 위한 산화 몰리브데늄 확산장벽 층)

  • Lee, Byung-Seok;Lee, Doh-Kwon
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.85-90
    • /
    • 2015
  • Two-step processes for preparing $Cu(In,Ga)Se_2$ absorber layers consist of precursor layer formation and subsequent annealing in a Se-containing atmosphere. Among the various deposition methods for precursor layer, the nonvacuum (wet) processes have been spotlighted as alternatives to vacuum-based methods due to their potential to realize low-cost, scalable PV devices. However, due to its porous nature, the precursor layer deposited on Mo substrate by nonvacuum methods often suffers from thick $MoSe_2$ formation during selenization under a high Se vapor pressure. On the contrary, selenization under a low Se pressure to avoid $MoSe_2$ formation typically leads to low crystal quality of absorber films. Although TiN has been reported as a diffusion barrier against Se, the additional sputtering to deposit TiN layer may induce the complexity of fabrication process and nullify the advantages of nonvacuum deposition of absorber film. In this work, Mo oxide layers via thermal oxidation of Mo substrate have been explored as an alternative diffusion barrier. The morphology and phase evolution was examined as a function of oxidation temperature. The resulting Mo/Mo oxides double layers were employed as a back contact electrode for $CuInSe_2$ solar cells and were found to effectively suppress the formation of $MoSe_2$ layer.