• 제목/요약/키워드: pressure compensating oil

검색결과 3건 처리시간 0.015초

레이디얼 피스톤 펌프의 피스톤 접촉 메커니즘 개발 (Development of piston contact mechanism for radial piston pump)

  • 함영복;차재곤;김대명;공태우;윤소남;안국영;권병수
    • 유공압시스템학회논문집
    • /
    • 제7권1호
    • /
    • pp.1-5
    • /
    • 2010
  • This paper presents the experimental results of the radial piston type oil pump with new mechanism for a metal diaphragm hydrogen compressor. Generally, metal diaphragm type hydrogen compressor systems are operated by oil hydraulic power. In this system an oil compensating pump has been demanded to compensate for a leakage oil head chamber. The metal diaphragm type hydrogen compressor consists of an oil compensating pump, commonly used hydraulic piston pump and driven by main crank shaft. The radial piston type oil compensating pump with new rolling contacted piston mechanism is developed and experimented. The developed piston element of the radial piston pump consists of piston, steel ball, return spring, two check valves, eccentric cam and ball racer. In this study, designed 4 type pistons as and orifice hole. Operating characteristics and pressure ripple characteristics are tested under no load to 60bar loaded with every 20bar increasing step and pressure ripple and flow rate are experimentally investigated.

  • PDF

심해 장비용 압력보상유의 압축성 계수 측정을 위한 실험적 연구 (Experimental Study on Compressibility Modulus of Pressure Compensation Oil for Underwater Vehicle)

  • 김진호;윤석민;홍섭;민천홍;성기영;여태경;최혁진;이승국
    • Ocean and Polar Research
    • /
    • 제37권1호
    • /
    • pp.73-80
    • /
    • 2015
  • In order to determine the appropriate volume of the a pressure compensator of deep seabed mining robots, this paper reports on an experimental test for oil volume change in an oil-filled box. At the design stage of underwater robots, it is crucial to determine the capacity of the hydraulic compensator which is replenished as much as the contracted oil volume of the robots. A pilot mining robot, MienRo was designed to work under 6,000 m in the deep sea. The hydraulic actuating oil and pressure compensating oil of MineRo may be exposed at a hydrostatic pressure environment of 600 bar. Although the oil can be assumed to be incompressible, its volume is actually changed under high pressure conditions due to air contained in the oil and oil contraction. To determine the capacity of the pressure compensator, the oil contraction rate should be verified through an experimental test using a hyperbaric chamber.

유압식 구동장치의 서보밸브 오프셋 보정 방법에 관한 실험적 연구 (An Experimental Research of Servo Valve Offset Correction Method of Hydraulic Actuator)

  • 반준혁
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권2호
    • /
    • pp.72-79
    • /
    • 2019
  • Despite the development of electronic components and microprocessors, hydraulic actuators are still being applied in various applications. In some applications, there is a desire to apply a hydraulic actuator with a relatively small position error to the system. Various studies have been conducted to reduce the position error of hydraulic actuators. In this paper, the position error of the hydraulic actuator when the hydraulic oil pressure is supplied is defined as the offset generated by the servo valve, and the method for correcting the servo valve offset has been studied. A method for compensating the servo valve offset was proposed and it was verified through experiments that the position error of the hydraulic actuator was reduced. We also compared the servo valve offset correction method and controller using the PID control and disturbance observer used to reduce the position error of the hydraulic actuator. No-load test and load test were performed to confirm the performance of the servo valve offset correction method. The results of the study were compared with those obtained by using the disturbance observer and PID control.