• Title/Summary/Keyword: pressure capsule

Search Result 56, Processing Time 0.03 seconds

Telemetry capsule for pressure monitoring in the gastrointestinal tract (소화관 내 압력 측정을 위한 텔레메트리 캡슐 구현)

  • Yoon, Ki-Won;Woo, Sang-Hyo;Lee, Jyung-Hyun;Moon, Yeon-Kwan;Park, Hee-Joon;Won, Chul-Ho;Kim, Byung-Kyu;Choi, Hyun-Chul;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.211-218
    • /
    • 2005
  • As the cause and the treatment about gastrointestinal disease has been issued recently, the importance of measuring the pressure in the gastrointestinal tract has been increased. However, the conventional measurement methods of the pressure in the gastrointestinal tract cause the patients' pain and inconvenience as well as an inaccurate pressure measurement. In this paper, the pressure monitoring telemetry system has been designed and implemented for an accurate pressure measurement inside the gastrointestinal tract with minimizing pain and inconvenience. The pressure monitoring telemetry system is composed of a pressure measurement capsule and an external receiver. The capsule has been miniaturized into the same size of a vitamin tablet so that the capsule can be swallowed through the oral cavity. After the capsule acquires and encodes the pressure data in the gastrointestinal tract, the encoded pressure data are modulated by frequency shift keying (FSK) and transmitted with ultrahigh frequency (UHF) band signal to the outside of a body. The performance of the telemetry capsule for monitoring pressure in the gastrointestinal tract is demonstrated by the results of animal in-vivo experiments.

Influence of the Mars atmosphere model on aerodynamics of an entry capsule

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.239-256
    • /
    • 2019
  • This study develops a dual purpose: i) evaluating the effects of two different Mars atmosphere models (NASA Glenn and GRAM-2001) on aerodynamics of a capsule (Pathfinder) entering the Mars atmosphere, ii) verifying the feasibility of evaluating the ambient density and pressure by means of the methods by McLaughlin and Cassanto, respectively and therefore to re-build the values provided by the models. The method by McLaughlin relies on the evaluation of the capsule drag coefficient, the method by Cassanto relies on the measurement of pressure at a point on the capsule surface in aerodynamic shadow. The study has been carried out computationally by means of: i) a code integrating the equations of dynamics of the capsule for the computation of the entry trajectory, ii) a DSMC code for the solution of the flow field around the capsule in the altitude interval 50-100 km. The models show consistent differences at altitudes higher than about 40 km. It seems that the GRAM-2001 model is more reliable than the NASA Glenn model. In fact, the NASA Glenn model produces, at high altitude, temperatures that seem to be too low compared with those from the GRAM-2001 model and correspondingly very different aerodynamic conditions in terms of Mach, Reynolds and Knudsen numbers. This produces pretty different capsule drag coefficients by the two models as well as pressure on its surface, making not feasible neither the method by McLaughlin nor that by Cassanto, until a single, reliable model of the Mars atmosphere is not established. The present study verified that the implementation of the Cassanto method in Mars atmosphere should rely (such as it is currently) on pressure obtained experimentally in ground facilities.

Pressure Drop and Vibration Characteristics of the Capsule with the Modification of Bottom Structures (캡슐 하단부 구조변경에 따른 압력강하 및 진동특성)

  • Choi, M.H.;Choo, K.N.;Cho, M.S.;Kim, B.G.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1370-1377
    • /
    • 2005
  • The bottom structure of an instrumented capsule is a part which is joined at the receptacle of the flow tube in the reactor in-core. A geometrical change of the bottom structure has an effect on the pressure drop and the vibration of the capsule. The out-pile test to evaluate the structural integrity of the material capsule called 04M-17U was performed by using a single channel and a half core test loop. From the pressure drop test, the optimized diameter of the cone shape's bottom structure which satisfies HANARO's flow requirement (19.6 kg/s) is 71 mm. The maximum displacement of the capsule measured at the half core test loop is lower than 1.0 mm. From the analysis results, it is found that the test hole will not be interfered with near the flow tubes because its displacement due to the cooling water is very small at 0.072 mm. The fundamental frequency of the capsule under water is 9.64 Hz. It is expected that the resonance between the capsule and the fluid flow due to the cooling water in HANARO's in-core will not occur. Also, the new bottom structure of a solid cone shape with 71 mm in diameter will be applicable to the material and special capsules in the future.

Pressure Drop and Vibration Characteristics of the Capsule with the Modification of Bottom Structures (캡슐 하단부 구조변경에 따른 압력강하 및 진동특성)

  • Choi, M.H.;Choo, K.N.;Cho, M.S.;Lee, K.H.;Kim, B.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.782-787
    • /
    • 2005
  • The bottom structure of an instrumented capsule is a part which is joined at the receptacle of the flow tube in the reactor in-core. A geometrical change or the bottom structure has an effect on the pressure drop and the vibration of the capsule. The out-pile test to evaluate the structural Integrity of the material capsule called 04M-l7U was performed by using a single channel and a half core test loop. From the pressure drop test, the optimized diameter of the cone shape's bottom structure which satisfies HANARO's flow requirement (19 6 kg/s) is 71 mm. The maximum displacement of the capsule measured at the half core test loop is lower than 1.0 mm. From the analysis results, it is found that the test hole will not be interfered with near the flow tubes because its displacement due to the cooling water is very small at 0.072 mm. The fundamental frequency of the capsule under water is 9.64 Hz. It is expected that the resonance between the capsule and the fluid flow due to the cooling water in HANARO's In-core will not occur. Also, the new bottom structure of a solid cone shape with 71 mm in diameter will be applicable to the material and special capsules in the future.

  • PDF

Study on the Analysis of Failure Cause and Determination of Life Test Mode of Capsule (축열조 캡슐 고장원인 분석과 수명시험 모드 결정에 관한 연구)

  • Kang, Bosik;Lee, Yongbum;Jung, Dongsoo;Lee, Chungsung
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.260-270
    • /
    • 2018
  • Purpose: The purpose of this study is to evaluate the life of the capsule, which is a core part of the heat storage cooling system. This paper will develop a life test mode that can reproduce environment conditions through the analysis of capsule shrinkage and expansion characteristics. Methods: In order to determine the life test mode of the capsule, this paper analyzed the case of field failures and analyzed the deformation characteristics according to the pressure fluctuation of the capsule. The method to find out whether the field failure and deformation analysis results are consistent is the testing with the construction of the repetition pressure test equipment and the thermal cycle test to reproduce the freezing and thawing characteristics. Results: In this study, failure mode analysis and analysis of freezing and thawing characteristics regarding to the capsule positions were completed. Based on this test & analysis results, this paper have been able to determine the main parameters for determining the life test mode, the freezing and thawing time. Conclusion: Determining the lifetime mode of the capsule can be used to improve the life and performance of the thermal storage system.

Pressure Monitoring System in Gastro-Intestinal Track (소화기관내의 압력 모니터링 시스템)

  • 김용인;박석호;김병규;박종오
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1089-1094
    • /
    • 2004
  • Diseases in the gastro-intestinal track are on an increasing trend. In order to diagnose a patient, the various signals of the digestive organ, such as temperature, pH, and pressure, can offer the helpful information. Among the above mentioned signals, we choose the pressure variation as a monitoring signal. The variation of a pressure signal of the gastro-intestinal track can offer the information of a digestive trouble or some clues of the diseases. In this paper, a pressure monitoring system for the digestive organs of a living pig is presented. This system concept is to transmit the measured biomedical signals from a transmitter in a living pig to wireless receiver that is positioned out of body. The integrated solution includes the following parts: (1) the swallow type pressure capsule, (2) the receiving set consisting of a receiver, decoder box, and PC. The merit of the proposed system if that the monitoring system can supply the precise and repeatable pressure in the gastro-intestinal track. In addition, the design of low power consumption enables it to keep sending reliable signals while the pressure capsule is working in the digestive organ. The subject of the study for the pressure monitoring system is in-vivo experiments for a living pig. We achieved the pressure tracings in digestive organs and verified the validity of system after several in-vivo tests using pressure monitoring system. As a result, we found each organ has its own characterized pressure fluctuation.

Compatibility Test of the Capsule with Cone Shape Bottom Guide Structures to the HANARO Reactor (원추형 하단부 구조를 갖는 캡슐의 하나로와의 양립성시험)

  • Choi, M.H.;Cho, M.S.;Choo, K.N.;Park, S.J.;Kim, B.G.;Kang, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.444-449
    • /
    • 2004
  • The design modification of bottom guide structures of the instrumented capsule, which is used for the irradiation test in the HANARO reactor, was required because of the trouble of the bottom guide arm's pin during irradiation. The previous structure with 3-pin arms was changed into the cone shape of one body. The specimens of the bottom end cap ring with three different sizes (${\Phi}68/70/72mm$) were designed and manufactured. The out-pile tests for the capsule with previous and new three bottom guide structures were performed in the one-channel flow test facilities. In order to evaluate the compatibility with HANARO and the structural integrity of the capsule, a loading/unloading, a pressure drop, a thermal performance, a vibration, and an endurance test were conducted. From out-pile test results, the capsule with the cone shape bottom guide structures was found to be more stable than the previous structure and the optimized size of the bottom guide structure selected was 70mm in diameter. It is expected that the new bottom guide structures will be applicable to all material and special capsules which will be designed and manufactured for the irradiation tests in the future.

  • PDF

Compatibility test of a non-instrumented irradiation test capsule for the HANARO test reactor (환형소결체 하나로 조사시험용 무계장 캡슐의 연구로 설치 적합성시험)

  • Lee, Kang-Hee;Kim, Dae-Ho;Chun, Tae-Hyun;Kim, Hyung-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.226-229
    • /
    • 2008
  • To investigate an in-pile behavior of the newly developed DUO fuel pellet, the irradiation test will be carried out in the domestic test reactor. Irradiation test capsule for the HANARO reactor, which is a specially designed equipment used for material, irradiation and creep test, must satisfy the operational requirement on the hydraulic characteristics and structural integrity. In this study, a pressure drop, a flow-induced vibration and a short-term endurance test for the newly developed non-instrumented test capsule were carried out using FIVPET as a out-pile evaluation test. The test results show that the new test rig satisfy the HANARO operational requirement with sufficient margin.

  • PDF

Design of a New Capsule Controlling Neutron Flux and Fluence and Temperature of lest Specimen

  • Choo, Kee-Nam;Kang, Young-Hwan;Taiji Hoshiya;Motoji Niimi;Takashi Saito
    • Nuclear Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.148-157
    • /
    • 1997
  • A new capsule that has a unique structure in which the test environments including neutron flux and fluence, and irradiation temperature can be controlled precisely during irradiation, was conceptually designed. The capsule structure and instrumentation were successfully designed according to the JMTR's standard procedures of capsule design. Based on the target irradiation, the details of the irradiation such as neutron fluence and irradiation temperature ore calculated and the related capsule safety was evaluated. In addition, the effects of design parameters including the changes in inner-capsule configuration, heater capacity, and Helium gas pressure on the specimen temperature were analyzed with a computer program. Through these thermal and strength evaluations, this capsule was proved to be safe during the irradiation in the JMTR.

  • PDF

Updates on the treatment of adhesive capsulitis with hydraulic distension

  • Jang Hyuk, Cho
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.1
    • /
    • pp.19-26
    • /
    • 2021
  • Adhesive capsulitis of the shoulder joint is a common disease characterized by pain at the insertional area of the deltoid muscle and decreased range of motion. The pathophysiological process involves fibrous inflammation of the capsule and intraarticular adhesion of synovial folds leading to capsular thickening and contracture. Regarding the multidirectional limitation of motion, a limitation in external rotation is especially prominent, which is related to not only global fibrosis but also to a localized tightness of the anterior capsule. Ultrasound and magnetic resonance imaging studies can be applied to rule out other structural lesions in the diagnosis of adhesive capsulitis. Hydraulic distension of the shoulder joint capsule provides pain relief and an immediate improvement in range of motion by directly expanding the capsule along with the infusion of steroids. However, the optimal technique for hydraulic distension is still a matter of controversy, with regards to the infusion volume and rupture of the capsule. By monitoring the real-time pressure-volume profile during hydraulic distension, the largest possible fluid volume can be infused without rupturing the capsule. The improvement in clinical outcomes is shown to be greater in capsule-preserved hydraulic distension than in capsule-ruptured distension. Moreover, repeated distension is possible, which provides additional clinical improvement. Capsule-preserved hydraulic distension with maximal volume is suggested to be an efficacious treatment option for persistent adhesive capsulitis.