• Title/Summary/Keyword: pressurant

Search Result 40, Processing Time 0.036 seconds

Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (I) (액체로켓추진시스템의 가압제 탱크에서 가압제 토출시 온도강하율에 대한 연구 (I))

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Han, Sang-Yeop;Cho, In-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.54-61
    • /
    • 2007
  • Propellant pressurization system in liquid rocket propulsion system plays a role supplying pressurant gas at a controlled pressure into the ullage space of propellant tanks. The most important design parameter for such propellant pressurization system is the temperature of pressurant gas fed from pressurant tank. Such pressurant is gaseous state, of which density is very sensitive to the temperature of pressurant. Generally for the propulsion system, which requires high thrust and is consisted of cryogenic propellant the pressurant is stored at high density and high pressure to reduce the weight of pressurant tanks, which are placed inside of cryogenic propellant tank. That is called cryogenic storage pressurization system. This study investigates the temperature variation of pressurant at the time when the pressurant is coming out of pressurant tank experimentally as well as numerically. Fluids used in this study are air and liquid oxygen as outer fluid and gaseous nitrogen and gaseous helium as pressurant respectively.

Required Pressurant Mass for Cryogenic Propellant Tank with Pressurant Temperature Variation (가압가스 온도에 따른 극저온 추진제탱크 가압가스 요구량)

  • Kwon, Oh-Sung;Kim, Byung-Hun;Cho, In-Hyun;Ko, Young-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1202-1208
    • /
    • 2010
  • The prediction of the required pressurant mass for maintaining the pressure of propellant tanks during propellant feeding is an important issue in designing pressurization system. The temperature of pressurant fed into propellant tank is the critical factor in the required pressurant mass and is one of the most crucial design parameters in the development of pressurization system including designing the weight of pressurant tanks and the size of heat exchanger. Hence a series of propellant drainage tests by pressurizing propellant stored in a cryogenic propellant tank have been performed with measuring the temperature distribution inside ullage and the required pressurant mass according to the temperature condition of pressurant. Results shows that the required pressurant mass decreases as the temperature of pressurant increases. However, the rate of the actual pressurant mass to the ideal required pressurant mass increases.

Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (II) (액체로켓추진시스템의 가압제 탱크에서 가압제 토출시 온도강하율에 대한 연구(II))

  • Chung, Yong-Gahp;Kim, Yong-Wook;Kim, Yoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.279-284
    • /
    • 2008
  • Propellant pressurization system in liquid rocket propulsion system plays a role in supplying pressurant gas at a controlled pressure into the ullage space of propellant tanks. The most important design parameter for such propellant pressurization system is the temperature of pressurant gas fed from pressurant tank, which is placed inside of cryogenic propellant tank. Such pressurant is gaseous state, of which density is very sensitive to the temperature of pressurant. Previous investigation dealt with thermal correlation of pressurant and external fluid at room temperature. This study investigates the temperature variation of cryogenic pressurant (GHe) at the time when the pressurant is coming out of pressurant tank, which is submerged in a liquid oxygen, experimentally as well as numerically.

Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (II) (액체로켓추진시스템의 가압제 탱크에서 가압제 토출 시 온도강하율에 대한 연구 (II))

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.58-64
    • /
    • 2007
  • Propellant pressurization system in liquid rocket propulsion system plays a role supplying pressurant gas at a controlled pressure into the ullage space of propellant tanks. The most important design parameter for such propellant pressurization system is the temperature of pressurant gas fed from pressurant tank, which is placed inside of cryogenic propellant tank. Such pressurant is gaseous state, of which density is very sensitive to the temperature of pressurant. Previous investigation dealt with thermal correlation of pressurant and external fluid at room temperature. This study investigates the temperature variation of cryogenic pressurant (GHe) at the time when the pressurant is coming out of pressurant tank, which is submerged in a liquid oxygen, experimentally as well as numerically.

  • PDF

Rounded Entry Orifice Characteristics for Pressurization Control (가압제어용 둥근 유입형 오리피스 특성)

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Jang, Je-Sung;Shin, Dong-Sung;Han, Sang-Yeop
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.401-404
    • /
    • 2008
  • Pressurization system in a liquid-propellant launcher supplies the controlled gas into the ullage volume of propellant tanks to feed propellants to combustion chamber by pressurizing propellants stored in propellant tanks. The ullage part of propellant tank should be constantly pressurized to supply the propellants stored in propellant tanks to turbo-pump or combustion chamber by pressurant pressurization system. Pressurant used to pressurize propellants is generally stored in a series of tanks at cryogenic temperature and high preassure inside an oxidizer tank. The reason is to store the quantity of pressurant as much as possible and to make pressurant tanks as small as (i.e. as light as) possible. However for test convenience pressurant tank is located at STP (standard temperature and pressure) environment in this study. Orifices are widely adapted to several pressurization systems in liquid rocket propulsion systems. Discharge coefficients of orifices are essentially needed for the optimized design of pressurization system in liquid rocket propulsion system. For this study gaseous nitrogen was served as pressurant and rounded entry orifices were employed. The forty-two (42) rounded entry orifices (the radii of curvatures are 0.5 and 1.0) have been tested experimentally in the supersonic flow region. The discharge coefficients of rounded entry orifices with inside diameters ranging from about 1.4 to 5.0mm was measured with 0.95 ${\sim}$ 0.99.

  • PDF

Basic Model for Propellant Tank Ullage Calculation (추진제탱크 얼리지 해석을 위한 기본모델)

  • Kwon, Oh-Sung;Cho, Nam-Kyung;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • Estimation of pressurant mass flowrate and its total mass required to maintain propellant tank pressure during propellant outflow is very important for design of pressurization control system and pressurant storage tank. Especially, more pressurant mass is required to maintain pressure in cryogenic propellant tank, because of reduced specific volume of pressurant due to heat transfer between pressurant and tank wall. So, basic model for propellant tank ullage calculation was proposed to estimate ullage and tank wall temperature distribution, required pressurant mass, and energy distribution of pressurant in ullage. Both test and theoretical analysis have been conducted, but only theoretical modeling method was addressed in this paper.

Prediction of Pressurant Mass Requirement for Propellant Tank with Operating Condition Variation (운용조건 변화에 따른 추진제탱크 가압가스 요구량 예측)

  • Kwon, Oh-Sung;Han, Sang-Yeop;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.54-62
    • /
    • 2011
  • The pressurant mass required for propellant tank pressurization with operating condition variation was estimated by using the numerical model already developed for this purpose. The model was applied to the concept design results of KSLV-II first stage oxygen tank. The supplied pressurant temperature, oxygen volumetric flow rate, and the ratio of length to diameter of the tank were selected as variables. The required pressurant mass and mass flow rate, collapse factor, ullage temperature distribution were predicted, and the results showed that the pressurant temperature had the largest effect on the amount of the required pressurant mass. The pressurizing efficiency of the propellant tank was calculated through analyzing energy distribution in the ullage. It was found that the gas-to-wall heat transfer in the ullage was dominant, and much of the pressurant energy was lost to tank wall heating.

Verification of Required Pressurant Mass Prediction Program for Propellant Tank through Flight Test Data (비행시험 데이터를 통한 추진제탱크 가압가스 요구량 예측 프로그램 검증)

  • Kwon, Oh-Sung;Han, Sang-Yeop;Cho, In-Hyun;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.723-725
    • /
    • 2010
  • Calculation program to predict required pressurant mass for propellant tank was verified through flight test data. This program was already developed and verified through ground test data, but to increase reliability of program, it was compared with flight test data of KSR-III launched in 2002. Because pressurant temperature incoming to propellant tank was not measured in flight test, that was assumed in calculation program. Required pressurant mass and inside temperature of oxygen tank dome was compared. Validation of calculation program was verified by showing required pressurant mass accuracy of 6%.

  • PDF

Study on Temperature Drop Rate during Pressurant Discharge (가압제 토출시 온도강하율에 대한 연구)

  • Chung, Yong-Gahp;Hong, Moon-Geun;Kwon, Oh-Sung;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.116-121
    • /
    • 2006
  • The pressurization system in a liquid rocket propulsion system provides a controlled gas pressure in the ullage space of the vehicle propellant tanks. It is advantage to employ a hot gas heat exchanger in the pressurization system to increase the specific volume of the pressurant and thereby reduce over-all system weight. Therefore a significant improvement in pressurization system performance can be achieved, particularly in a cryogenic system. For this study air and $CN_2$ are employed as external fluid and pressurant respectively Numerical analysis on the pressurant discharging characteristics have been compared with the experimental results performed at the PTF(Propellant-feeding Test Facility). It is shown that the discrepancy of analytic and experimental results is within about ${\pm}15%$. It is estimated that the temperature drop rate of cryogenic pressurant immersed liquid oxygen can be predicted using this analytic approach method.

  • PDF

Performance Test of PSD Oxidizer Drain Valve for KSLV-II (한국형발사체 PSD 산화제 배출밸브 성능시험)

  • Chung, Yonggahp;Han, Sangyeop;Kim, Suengik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1171-1175
    • /
    • 2017
  • Cryogenic helium gas is used as the pressurant for the oxidizer pressurization of DR(Damper Receiver) sphere in the PSD(Pogo Suppression Device) system and liquid oxygen is used as the oxidizer for the propellant in Korea Space Launch Vehicle-II. The helium gas is stored in pressurant cylinders inside the cryogenic liquid oxygen tank and liquid oxygen is stored in the oxidizer tank. In this study, the performance test of PSD liquid oxygen drain valve for KSLV-II was considered.

  • PDF