• Title/Summary/Keyword: pressing ceramics

Search Result 155, Processing Time 0.023 seconds

Fabrication and Characterization of Alumina Matrix Composites Reinforced with SiC whiskers

  • Han, Byung-Dong;Park, Dong-Soo
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.12-18
    • /
    • 1999
  • Alumina matrix composites reinforced with up to 20vol% of aligned SiC whiskers were fabricated by tape casting and hot pressing. Alumina composited with randomly distribution SiC whiskers were also fabricated in order to investigate the effect of whisker alignment on properties of the composites. XRD and optical microscopy were used to examine the whisker orientation. The fracture toughness increased with increasing whisker content, and it was higher in the direction normal to the tape casting direction.

  • PDF

Grain Boundary Behavior and Heat Treatment Effect of AlN Ceramics Prepared from Al-isopropoxide (Al-isopropoxide로부터 AlN 소결체의 입계상 거동 및 열처리 효과)

  • 황해진;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.4
    • /
    • pp.269-278
    • /
    • 1991
  • Fine AlN powder was synthesized by carbothermal reduction and nitridation of alumimun hydroxide prepared from Al-isopropoxide. AlN ceramics with Y2O3 and CaO were prepared by hot-pressing under the pressure of 30 MPa at 180$0^{\circ}C$ for 1 h in N2 atmosphere. Grain boundary behavior and purification mechanism of AlN lattice were examined by heat treatment of AlN ceramics at 185$0^{\circ}C$ for 1-6 h in N2 atmosphere. AlN ceramics without sintering additives showed poor sinterability. However, Y2O3-doped and CaO-doped AlN ceramics were fully densified nearly to theoretical density. As the heat treatment time increased, c-axis lattice parameter increased. This is attributed to the removal of Al2O3 in AlN lattice. This purification effect of AlN attice depended upon the quantity of secondary oxide phase in the inintial stage of heat treatment and the heat treatment time.

  • PDF

Mechanical Properties and Microstructure of Dental Heat-Pressable Glass-Ceramics (치과용 열가압 글라스 세라믹스의 기계적 성질과 미세구조)

  • 이해형;이병택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.143-150
    • /
    • 2004
  • Biaxial flexure strength (ball-on-3-ball) and fracture toughness (indentation microfracture) of heat-pressable glass-ceramics for dental use were investigated in this study. Crystal phase and microstructure of glass-ceramics were analyzed by XRD. SEM, and TEM. Crack propagation in specimens was not effectively arrested by dispersed crystalline particles. However, higher degree of crystallization probably contributes to strengthening of glass-ceramics. Better clinical reliability can be expected from lithium disilicate glass-ceramic because of its significantly higher biaxial flexure strength and fracture toughness.

Mechanical Properties of Hot-Pressed SiC with Rare-Earth Oxide (희토류 산화물을 첨가한 일축가압소결 탄화규소의 기계적 특성)

  • 최철호;이충선;박광자;조덕호;김영욱
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.158-163
    • /
    • 2000
  • Six different SiC ceramics with SiO2-Re2O3 (Re=Yb, Er, Y, Dy, Gd, Sm) as sintering additives have been fabricated by hot-pressing the SiC-Re2Si2O7 compositions at 1850$^{\circ}C$ for 2 hr under a pressure of 25 MPa. The room temperature strneth and the fracture toughness of the hot-pressed ceramics were characterized and compared with those of the ceramics sintered with YAG (Y3Al5O12). Five SiC ceramics (Re=Yb, Er, Y, Dy, Gd) investigated herein showed sintered densities higher than 94% of theoretical. Tthe SiC-Re2Si2O7 compositions showed lower strength and comparable toughness to those from SiC-YAG composition, owing to the chemical reaction between SiO2 and SiC during sintering. SiC ceramics fabricated from a SiC-Y2Si2O7 composition showed the best mechanical properties of 490 MPa and 4.8 MPa$.$m1/2 among the compositions investigated herein.

  • PDF

Effects of Oxide Additions on Mechanical Properties and Microstructures of AlN Ceramics Prepared from Al-isopropoxide (Al-isopropoxide로부터 제조한 AlN 세라믹스의 기계적 성질과 미세구조에 미치는 산화물 첨가제의 영향)

  • 이홍림;황해진
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.799-807
    • /
    • 1990
  • In this study, effects of oxide additives on mechanical properties and microstructure of A1N and A1N polytype ceramics were investigated. Fine A1N powder was synthesized by nitriding alumiuim hydroxide prepared from Al-isopropoxide, at 1350$^{\circ}C$ for 10h in N2 atmosphere. By adding 3w/o Y2O3, 0.56w/o CaO, and 10w/o SiO2 to AlN powder, AlN and AlN polytype ceramics were prepared by hot-pressing under the pressure of 30 MPa at 1800$^{\circ}C$ for 1h. AlN ceramics with no additives formed considerable amount of AlON phase, while AlN ceramics doped with Y2O3 or CaO decreased AlON phase and formed Y-Al or Ca-Al oxide compound. AlN+10w/o SiO2(+3w/o Y2O3) composition produced AlON and AlN polytype compound having 21R as a major phase. Room temperature flexural strength of AlN ceramics with no additive was 246MPa, and room temperature flexural strength and critical temperature difference by thermal shock(ΔTc) of AlN ceramics dooped with Y2O3 or CaO were 532MPa/340$^{\circ}C$ and 423MPa/300$^{\circ}C$, respectively. Y2O3 and CaO used as sintering agent played roles of densification and oxygen removal of AlN ceramics, and affected grain growth/grain morphologies of AlN ceramics.

  • PDF

Effect of Thermal Aging in PMN-PZT Ceramics (PMN-PZT 세라믹스에 있어서 열에이징 효과)

  • 이개명;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.17-21
    • /
    • 1995
  • Tw types of Pb(Mn$\sub$1/3/Nb$\sub$2/3/)O$_3$+PZT Ceramics had been fabricated by hot-pressing method. One had cause grain and the other had fine grain doe to Cr$_2$O$_3$ addition. These specimen were poled by applying the DC electric field in various steps. The effects of thermal aging on their piezoelectric characteristics and temperature stability of the frequency were investigated.

  • PDF

Transparent Ceramics for Visible/IR Windows: Processing, Materials and Characterization

  • Jung, Wook Ki;Ma, Ho Jin;Kim, Ha-Neul;Kim, Do Kyung
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.551-563
    • /
    • 2018
  • Visible and IR windows require a combination of high optical transparency and superior thermal and mechanical properties. Materials, fabrication and characterization of transparent ceramics for visible/IR windows are discussed in this review. The transparent polycrystalline $Y_2O_3$, $Y_2O_3-MgO$ nanocomposites and $MgAl_2O_4$ spinel ceramics are fabricated by advanced ceramic processing and the use of special sintering technologies. Ceramic processing conditions for achieveing fully densified transparent ceramics are strongly dependent on the initial powder characteristics. In addition, appropriate use of sintering technologies, including vacuum sintering, hot-pressing and spark plasama sintering methods, results in outstanding thermal and mechanical properties as well as high optical transparency of the final products. Specifically, the elimination of light scattering factors, including residual pores, second phases and grain boundaries, is a key technique for improving the characteristics of the transparent ceramics. This paper discusses the current research issues related to synthesis methods and sintering processes for yttria-based transparent ceramics and $MgAl_2O_4$ spinel.

Porosity Control of Porous Zirconia Ceramics (다공질 지르코니아 세라믹스의 기공율 제어)

  • Chae, Su-Ho;Eom, Jung-Hye;Kim, Young-Wook;Song, In-Hyuek;Kim, Hai-Doo;Bae, Ji-Soo;Na, Sang-Moon;Kim, Seung-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.65-68
    • /
    • 2008
  • A simple pressing process using zirconia and microbead for fabricating porous zirconia ceramics is demonstrated. Effects of microbead content and sintering temperature on microstructure, porosity, compressive and flexural strengths were investigated in the processing of porous zirconia ceramics using microbead as a pore former. By controlling the microbead content and the sintering temperature, it was possible to produce porous zirconia ceramics with porosities ranging from 43% to 70%. Typical compressive and flexural strength values at ${\sim}50%$ porosity were ${\sim}150\;MPa$ and ${\sim}35\;MPa$, respectively.

Sintering of $Si_3N_4$ Powder Prepared by Self-Propagating High-Temperature Synthesis (SHS)

  • Bai, Ling;Zhao, Xing-Yu;Ge, Chang-Chun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.268-269
    • /
    • 2006
  • Preparation processing of sintered silicon nitride ceramics was emphatically investigated with Self-Propagating High-Temperature Synthesis (SHS) of silicon nitride prepared by ourselves as raw material. The results indicate that good sinter ability can be obtained with cheaply SHS of silicon nitride preparing silicon nitride materials. The cost of silicon nitride materials will be lowered.

  • PDF

Effects of Template Size and Content on Porosity and Strength of Macroporous Zirconia Ceramics (기공형성제 크기와 함량이 다공질 지르코니아 세라믹스의 가공율과 강도에 미치는 영향)

  • Chae, Su-Ho;Kim, Young-Wook;Song, In-Hyuek;Kim, Hai-Doo;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.35-40
    • /
    • 2009
  • Using zirconia and poly (methyl methacrylate-coethylene glycol dimethacrylate) (PMMA) microbeads, macroporous zirconia ceramics were fabricated by a simple pressing method. Effects of template size and content on microstructure, porosity, and flexural and compressive strengths were investigated in the processing of the macroporous zirconia ceramics. Three different sizes of microbeads (8, 20, and $50{\mu}m$) were used as a template for fabricating the macroporous ceramics. The porosity increased with increasing the template size at the same template content. The flexural and compressive strengths were primarily influenced by the porosity rather than the template size. However, the strengths increased with decreasing the template size at the same porosity. By controlling the template size and content, it was possible to produce macroporous zirconia ceramics with porosities ranging from 58% to 75%. Typical flexural and compressive strength values at 60% porosity were ${\sim}30\;MPa$ and ${\sim}75\;MPa$, respectively.