• Title/Summary/Keyword: press-drying

Search Result 129, Processing Time 0.023 seconds

Characterization of alkali activated geopolymer mortar doped with MWCNT

  • Khater, H.M.;Abd el Gawaad, H.A.
    • Advances in materials Research
    • /
    • v.4 no.1
    • /
    • pp.45-60
    • /
    • 2015
  • This paper aimed to investigate the effect of MWCNTs on properties of slag Geopolymeric mortar. Geopolymeric matrices containing different MWCNTs concentrations (0.0, 0.1, 0.2, 0.3 and 0.4 % by weight of the used binder) were synthesized. The Geopolymer mortar composed of aluminosilicate slag to sand (1:2), while the alumino silicate source binder composed of 50% air cooled slag and 50%water cooled slag both passing a sieve of $90{\mu}m$, while the sand passing a sieve of 1 ml. The materials prepared at water/binder ratios in a range of 0.34-0.39% depending on the added MWCNT, whereas the Gelenium Ace-30 superplasticizer used in the ratio of 1.4-2.2% from the total dry weight for better dispersion of MWCNT under sonication for 15 min. Alkaline activation of the Geopolymer mortar was carried by using of 6% NaOH. Curing was performed under temperature of $40^{\circ}C$ and 100% R.H. Results showed that the addition of MWCNTs enhanced the resulting amorphous geopolymer structure with marked decrease in the drying shrinkage as well as water absorption specially when using 0.1% MWCNT, while further increase in MWCNTs results in agglomeration in MWCNT within the matrix and so hinder the propagation of Geopolymerization reaction and negatively affect the formed geopolymer structure.

Fabrication of Activated Alumina Using Aluminum Hydroxide by a Hydrothermal Process (수산화알루미늄으로부터 수열법을 이용한 활성 알루미나 제조에 관한 연구)

  • Bae, Hyeon Cheol;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.384-389
    • /
    • 2013
  • Activated alumina was fabricated with aluminum hydroxide in this study. High-purity alumina gel and boehmite were prepared from aluminum hydroxide by a hydrothermal process and fired to activate alumina having a surface area of 380 ~ 480 $m^2/g$ with less loss of ignition. The aging and drying condition during the fabrication process affected the loss of ignition, the sedimentation time of the alumina suspension, as well as the surface area of the activated alumina. For pellet-type activated alumina, the pre-fired alumina gel and boehmite were press-formed and fired at $400^{\circ}C$ and $550^{\circ}C$ for 6 h, respectively. The fired pellets showed a low density of 2.0 ~ 2.2 $g/cm^3$ with 20% firing shrinkage and sufficient handling strength. In this study, a new fabrication process for high-quality activated alumina with aluminum hydroxide is introduced. The effects of the processing parameters on the activated alumina properties are also examined.

Preparation and characterization of TiO2 membrane on porous 316 L stainless steel substrate with high mechanical strength

  • Mohamadi, Fatemeh;Parvin, Nader
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.251-262
    • /
    • 2015
  • In this work the preparation and characterization of a membrane containing a uniform mesoporous Titanium oxide top layer on a porous stainless steel substrate has been studied. The 316 L stainless steel substrate was prepared by powder metallurgy technique and modified by soaking-rolling and fast drying method. The mesoporous titania membrane was fabricated via the sol-gel method. Morphological studies were performed on both supported and unsupported membranes using scanning electron microscope (SEM) and field emission scanning microscope (FESEM). The membranes were also characterized using X-ray diffraction (XRD) and $N_2$-adsorption / desorption measurement (BET analyses). It was revealed that a defect-free anatase membrane with a thickness of $1.6{\mu}m$ and 4.3 nm average pore size can be produced. In order to evaluate the performance of the supported membrane, single-gas permeation experiments were carried out at room temperature with nitrogen gas. The permeability coefficient of the fabricated membrane was $4{\times}10^{-8}\;lit\;s^{-1}\;Pa^{-1}\;cm^{-1}$.

Numerical study of stress states near construction joint in two-plate-girder bridge with cast-in-place PC slab

  • Yamaguchi, Eiki;Fukushi, Fumio;Hirayama, Naoki;Kubo, Takemi;Kubo, Yoshinobu
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.173-184
    • /
    • 2005
  • For reducing construction cost, two-plate-girder bridges are getting popular in Japan. This type of bridge employs a PC slab, which is often cast-in-place. In such a case, concrete is not usually cast over the whole slab at one time: some portions are constructed earlier than the rest. Therefore, a construction joint is inevitably created. Due to the drying shrinkage of concrete, tension stress may occur in concrete slab. High tensile stress can be expected near the construction joint where concretes with different ages meet. Moreover, prestressing is not applied over the whole length of slab at one time. This may also serve as a source of tensile stress in the slab. Thus there is a chance that cast-in-place PC slab, especially near the construction joint, may be subjected to tensile cracking. In the present study, stress states near the construction joint in the cast-in-place PC slab of a two-plate-girder bridge are investigated numerically. The finite element method is employed and the three-dimensional analysis is conducted to see the influence of dry shrinkage and prestressing. The stress states in the PC slab thus obtained are discussed. The simplified model of a plate girder for this class of analysis is also proposed.

Development of fine grained concretes for textile reinforced cementitious composites

  • Daskiran, Esma Gizem;Daskiran, Mehmet M.;Gencoglu, Mustafa
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.279-295
    • /
    • 2016
  • A new innovative composite material is textile reinforced cementitious composite (TRCC). To achieve high flexural performance researchers suggest polymer modification of TRCC matrices. In this study, nine ready mix repair mortars commonly used in construction industry and the production of TRCC elements were examined. Mechanical properties such as compressive and flexural strength, drying shrinkage were studied. Being a significant durability concern, alkali silica reaction tests were performed according to related standards. Results showed that, some ready repair mortar mixes are potentially reactive due to the alkali silica reaction. Two of the ready mortar mixes labelled as non-shrinkage in their technical data sheets showed the highest shrinkage. In this experiment, researchers designed new matrices. These matrices were fine grained concretes modified with polymer additives; latexes and redispersible powders. Two latexes and six redispersible powder polymers were used in the study. Mechanical properties of fine grained concretes such as compressive and flexural strengths were determined. Results showed that some of the fine grained concretes cast with redispersible powders had higher flexural strength than ready mix repair mortars at 28 days. Matrix composition has to be designed for a suitable consistency for planned production processes of TRCC and mechanical properties for load-carrying capacity.

Clay adsorptive membranes for chromium removal from water

  • Kashaninia, Fatemeh;Rezaie, Hamid Reza;Sarpoolaky, Hossein
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.259-264
    • /
    • 2019
  • Cost effective clay adsorptive microfiltration membranes were synthesized to remove Cr (III) from high polluted water. Raw and calcined bentonite were mixed in order to decrease the shrinkage and also increase the porosity; then, 20 wt% of carbonate was added and the samples, named B (without carbonate) and B-Ca20 (with 20 wt% calcium carbonate) were uniaxially pressed and after sufficient drying, fired at $1100^{\circ}C$ for 3 hours. Then, physical and mechanical properties of the samples, their phase analyses and microstructure and also their ability for Cr(III) removal from high polluted water (including 1000 ppm Cr (III) ions) were studied. Results showed that the addition of calcium carbonate lead the porosity to increase to 33.5% while contrary to organic pore formers like starch, due to the formation of wollastonite, the mechanical strength not only didn't collapse but also improved to 36.77 MPa. Besides, sample B-Ca20, due to the presence of wollastonite and anorthite, could remove 99.97% of Cr (III) ions. Hence, a very economic and cost effective combination of membrane filtration and adsorption technology was achieved for water treatment which made microfiltration membranes act even better than nanofiltration ones without using any adsorptive nano particles.

Assessment of lightweight recycled crumb rubber-cement composite produced by preplaced method

  • Shah, Syed Nasir;Mo, Kim Hung;Yap, Soon Poh;Putra, Azma;Othman, Muhammad Nur
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.409-417
    • /
    • 2021
  • The incorporation of non-biodegradable tyre waste in cement-based material has gained more interest towards sustainable construction these days. Crumb rubber (CR) from waste tyre is an alternative for sand replacement in low strength applications. Many researchers have studied CR cement-based materials produced by normal mixing (NM) method and reported a significant decrease in compressive strength due to CR. To compensate this strength loss, this research aims to study the innovative incorporation of CR in cement composite via the preplaced mixing (PM) method. In this investigation, cement composite was produced with NM and PM methods by replacing sand with 0%, 50%, and 100% CR by volume. The test results showed no significant difference in terms of densities of cement composite prepared with both mixing methods. However, cement composite prepared with PM method had lower strength reduction (about 10%) and lowered drying shrinkage (about 20%). In addition, the sound absorption coefficient and noise reduction coefficient of CR cement composite prepared by PM method were in similar range as those prepared with NM method. Overall, the results demonstrate that the PM method is promising, and the maximum replacement level of 50% is recommended for CR in the cement composite.

Combined effect of lightweight fine aggregate and micro rubber ash on the properties of cement mortar

  • Ibrahim, Omar Mohamed Omar;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.537-546
    • /
    • 2020
  • Exterior walls in buildings are exposed to various forms of thermal loads, which depend on the positions of walls. Therefore, one of the efficient methods for improving the energy competence of buildings is improving the thermal properties of insulation plaster mortar. In this study, lightweight fine aggregate (LWFA) and micro rubber ash (MRA) from recycled tires were used as partial replacements for sand. The flow ability, unit weight, compressive strength, tensile strength, thermal conductivity (K-value), drying shrinkage and microstructure scan of lightweight rubberized mortar (LWRM) were investigated. Ten mixtures of LWRM were prepared as follows: traditional cement mortar (control mixture); three mixes with different percentages of LWFA (25%, 50% and 75%); three mixes with different percentages of MRA (2.5%, 5% and 7.5%); and three mixes consisting both types with determined ratios (25% LWFA+5% MRA, 50% LWFA+5% MRA and 75% LWFA+5% MRA). The flow ability of the mortars was 22±2 cm, and LWRM contained LWFA and MRA. The compressive and tensile strength decreased by approximately 64% and 57%, respectively, when 75% LWFA was used compared with those when the control mix was used. The compressive and tensile strength decreased when 5% MRA was used. By contrast, mixes with determined ratios of LWFA and MRA affected reduced unit weight, K-value and dry shrinkage.

Microstructure and mechanical properties of ternary pastes activated with multi-colors glass and brick wastes

  • I.Y. Omri;N. Tebbal;Z. Rahmouni
    • Advances in concrete construction
    • /
    • v.17 no.3
    • /
    • pp.167-177
    • /
    • 2024
  • Disposal of waste glass derived from bottle or packaging glass, flat glass, domestic glass is one of the major environmental defies. Moreover, the remnants of bricks resulting from the remnants of buildings are also considered an important factor in polluting the environment due to the difficulty of filling or getting rid it. The aim of this study is to valorize these wastes through chemical activation to be an environmentally friendly material. The Microstructure, compressive strength, setting time, drying shrinkage, water absorption of different pastes produced by clear glass (CG), green glass (GG) and brick waste (BP) activated were tested and recorded after curing for 3, 7, 28 and 365 days. Five samples of pastes were mixed in proportions represented by: 100% GP (GP), 100% GGP (GGP), 100% BP (BP), 90% GP + 10% BP (GPB) and 90% GGP + 10% BP (GGPB). Various parameters considered in this study include sodium hydroxide concentrations (10 mol/l); 0.4 as alkaline liquid to binder ratio; 2.5 as sodium silicate to sodium hydroxide ratio and cured at 60℃ for 24 hours. Experimental results revealed that the addition of 10% of BP resulted in an increased strength performance of geopolymer paste especially with GGPB compared to GGP in 365 days. In addition, the 10% amount of BP increases the absorption and shrinkage rate of geopolymer pastes (GPB and GGPB) by reducing the setting time. SEM results revealed that the addition of BP and GP resulted in a dense structure.

Comparison of Active and Passive Sampling Methods for Formaldehyde Concentrations Among Workplaces in Some Plywood Industries (능동포집과 확산포집법에 의한 일부합판제조업의 공정별 포름알데하이드 농도 비교)

  • Jang, Mi;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.17-27
    • /
    • 1996
  • This study was designed to survey exposure levels of formaldehyde among workplaces in some plywood industries and to compare three sampling methods including the impinger method(IM, NIOSH method No. 3500), the solid sorbent tube method(SS, NIOSH method No. 2541), and the passive bubbler monitor method(PB, SKC). The survey was conducted in seven particle board manufacturing factories, two resin manufacturing factories and two plywood manufacturing factories in Incheon area during the period from March 6 to April 20, 1995. The workplaces included were the hot/cold press, the roller/spreader, the soaking/drying, and the reaction/mixing areas. The results were as follows; 1. The average(GM, GSD) concentrations of formaldehyde by sampling methods were 0.11(4.43) ppm by IM, 0.27(2.03) ppm by SS, and 0.29(2.04) ppm by PB, respectively. The concentrations by 1M method were statistically very significantly lower than those of SS and PB methods, particularly at low air borne concentrations of formaldehyde (p<0.001). 2. The area average concentrations of formaldehyde by workplaces measured with PB bubblers were 0.23(2.08) ppm from the press, 0.23(1.77) ppm from the spreader, 0.24(1.51) ppm from the soaking, and 0.46(1.96) ppm from the reaction areas, respectively. The personal average concentrations of formaldehyde by workplaces measured with PB bubblers were 0.30(1.77) ppm from the press, 0.33(1.54) ppm from the spreader, 0.36(1.46) ppm from the soaking, and 0.84(1.19) ppm from the reaction areas, respectively. 3. No statistically significant differences of formaldehyde concentrations among workplaces except the reaction area(p<0.001) were found. 4. Formaldehyde concentrations from personal samples were higher than those of from area sam pies in all workplaces studied. But no statistically significant differences of formaldehyde concentrations both area and personal samples were found. In conclusion, this study found that although formaldehyde concentrations in some plywood industries in Incheon area were below the regulatory limit of 1 ppm, they were over the limits recommended by NIOSH and ACGIH. This study also suggests that the impinger method may underestimate true formaldehyde concentrations. It implies that there will be more workplaces not meeting current regulatory limit if either the solid sorbent or passive bubbler methods were used instead of the impinger method. It is suggested that passive monitors will be a reasonable alternative for area and personal sampling of formaldehyde if the accuracy and validity of passive monitors be verified before use.

  • PDF