• 제목/요약/키워드: premolar

검색결과 985건 처리시간 0.031초

Orthodontic correction of bialveolar protrusion by interproximal reproximation and water-soluble tubes bonded with deflection-based bonding technique: A case report (인접면 삭제와 변위-기반 접착술로 부착한 수용성 튜브를 이용한 절치 돌출의 교정 치료: 증례보고)

  • Roh, Yu-Yeon;Lim, Sung-Hoon;Jeong, Seo-Rin
    • The Journal of the Korean dental association
    • /
    • 제55권12호
    • /
    • pp.850-860
    • /
    • 2017
  • Orthodontic treatment with premolar extraction is usually performed to correct bialveolar protrusion. These methods require the use of stiff rectangular working archwire which requires lengthy alignment and leveling before insertion. In this case report, interproximal reproximation was performed instead of extraction. To establish clearance between the archwire and resin domes fixing the archwire, an archwire was inserted into a water-soluble tube before fabricating resin domes. This tube is solved away by the saliva. During fabrication of resin domes, the archwire was deflected intentionally reflecting the displacement of teeth from their ideal position. This can be called as deflection-based bonding (DBB) technique. DBB is different from conventional method of positioning the brackets on its ideal position and then inserting an archwire to align the brackets. Because the orthodontic force of the archwire comes from its deflection from passive configuration, deflecting an archwire as needed can move the teeth more predictably than just bonding brackets on its ideal position. Also, areas with good alignment before orthodontic treatment can be maintained simply by not deflecting the archwire during bonding in these areas. After initial alignment, interproximal reproximation was performed to create 4.8 mm space in the maxillary arch and 4.2 mm space in the mandibular arch. These spaces were closed using orthodontic mini-implant anchorage thus retracting the maxillary incisors 4 mm posteriorly accompanied with 0.7 mm and 0.3 mm distal movement of right and left molars. By using interproximal reproximation and water-soluble tube with DBB, mild bialveolar protrusion was successfully treated without extraction.

  • PDF

Effects Of Minocycline And $TGF-{\beta}1$ On Human Gingival Fibroblasts And Periodontal Ligament Cells In Vitro (Minocycline 및 $TGF-{\beta}1$이 배양 인체 치은섬유모세포와 치주인대세포에 미치는 영향)

  • Yoon, Dong-Hwan;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • 제26권1호
    • /
    • pp.188-201
    • /
    • 1996
  • One of the initial events required for periodontal regeneration is the attachment, spreading and proliferation of fibroblasts at the healing sites. These have been reported that minocycline stimulates the attachment of gingival fibroblasts and periodontal ligament cells and $TGF-{\beta}1$ enhances the proliferation of periodontal ligament cells. The purpose of this study was to evaluate and confirm the effect of minocycline and $TGF-{\beta}1$ on human gingival fibroblasts and periodontal ligament cells. That gingival fibroblasts and periodontal ligament cells used in this study were obtained from the explants of healthy periodontal ligaments and gingival tissues of extracted 3rd molars or premolar teeth extracted from the patients with orthodontic treatment. The cells were cultured in ${\alpha}-MEM$(minimal essential medium) supplemented with antibiotics and FBS(fetal bovine serum) at $37^{\circ}C$ in a humidified atmosphere of 5% carbon dioxide-95% air. Cells were used between the 5th to 8th passage in this study. The attachment and activity of both cells were evaluated by MTT assay. The results were as follows: 1. Maximum gingival fibroblast attachment was seen at a $50{\mu}g/ml$ dose of minocycline, while maximum periodontal ligament cell attachment was seen at a $100{\mu}g/ml$, and exposure of both cells to minocycline above maximal attachment dose results in a decline from maximum attachment. 2. The activity values of both cells tested minocycline were below to the control activity values at all concentrations. 3. The attachment values of both cells tested $TGF-{\beta}1$ were below or similar to control attachment values. On the above the findings, minocycline stimulated the cell attachment of gingival fibroblasts and periodontal ligament cells and $TGF-{\beta}1$ enhances the cell activity of periodontal ligament cells.

  • PDF

Comparison of prosthetic models produced by traditional and additive manufacturing methods

  • Park, Jin-Young;Kim, Hae-Young;Kim, Ji-Hwan;Kim, Jae-Hong;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권4호
    • /
    • pp.294-302
    • /
    • 2015
  • PURPOSE. The purpose of this study was to verify the clinical-feasibility of additive manufacturing by comparing the accuracy of four different manufacturing methods for metal coping: the conventional lost wax technique (CLWT); subtractive methods with wax blank milling (WBM); and two additive methods, multi jet modeling (MJM), and micro-stereolithography (Micro-SLA). MATERIALS AND METHODS. Thirty study models were created using an acrylic model with the maxillary upper right canine, first premolar, and first molar teeth. Based on the scan files from a non-contact blue light scanner (Identica; Medit Co. Ltd., Seoul, Korea), thirty cores were produced using the WBM, MJM, and Micro-SLA methods, respectively, and another thirty frameworks were produced using the CLWT method. To measure the marginal and internal gap, the silicone replica method was adopted, and the silicone images obtained were evaluated using a digital microscope (KH-7700; Hirox, Tokyo, Japan) at 140X magnification. Analyses were performed using two-way analysis of variance (ANOVA) and Tukey post hoc test (${\alpha}=.05$). RESULTS. The mean marginal gaps and internal gaps showed significant differences according to tooth type (P<.001 and P<.001, respectively) and manufacturing method (P<.037 and P<.001, respectively). Micro-SLA did not show any significant difference from CLWT regarding mean marginal gap compared to the WBM and MJM methods. CONCLUSION. The mean values of gaps resulting from the four different manufacturing methods were within a clinically allowable range, and, thus, the clinical use of additive manufacturing methods is acceptable as an alternative to the traditional lost wax-technique and subtractive manufacturing.

Influence of the material for preformed moulds on the polymerization temperature of resin materials for temporary FPDs

  • Pott, Philipp-Cornelius;Schmitz-Watjen, Hans;Stiesch, Meike;Eisenburger, Michael
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권4호
    • /
    • pp.294-301
    • /
    • 2017
  • PURPOSE. Temperature increase of $5.5^{\circ}C$ can cause damage or necrosis of the pulp. Increasing temperature can be caused not only by mechanical factors, e.g. grinding, but also by exothermic polymerization reactions of resin materials. The aim of this study was to evaluate influences of the form material on the intrapulpal temperature during the polymerization of different self-curing resin materials for temporary restorations. MATERIALS AND METHODS. 30 provisonal bridges were made of 5 resin materials: Prevision Temp (Pre), Protemp 4 (Pro), Luxatemp Star (Lux), Structure 3 (Str) and an experimental material (Exp). Moulds made of alginate (A) and of silicone (S) and vacuum formed moulds (V) were used to build 10 bridges each on a special experimental setup. The intrapulpal temperatures of three abutment teeth (a canine, a premolar, and a molar,) were measured during the polymerization every second under isothermal conditions. Comparisons of the maximum temperature ($T_{Max}$) and the time until the maximum temperature ($t_{TMax}$) were performed using ANOVA and Tukey Test. RESULTS. Using alginate as the mould material resulted in a cooling effect for every resin material. Using the vacuum formed mould, $T_{Max}$ increased significantly compared to alginate (P<.001) and silicone (P<.001). In groups Lux, Pro, and Pre, $t_{TMax}$ increased when the vacuum formed moulds were used. In groups Exp and Str, there was no influence of the mould material on $t_{TMax}$. CONCLUSION. All of the mould materials are suitable for clinical use if the intraoral application time does not exceed the manufacturer's instructions for the resin materials.

Evaluation of marginal and internal gaps in single and three-unit metal frameworks made by micro-stereolithography

  • Kim, Dong-Yeon;Lee, Ha-Na;Kim, Ji-Hwan;Kim, Hae-Young;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권4호
    • /
    • pp.239-243
    • /
    • 2017
  • PURPOSE. The purpose of this study is to compare single and three-unit metal frameworks that are produced by micro-stereolithography. MATERIALS AND METHODS. Silicone impressions of a selected molar and a premolar were used to make master abutments that were scanned into a stereolithography file. The file was processed with computer aided design software to create single and three-unit designs from which resin frameworks were created using micro-stereolithography. These resin frameworks were subjected to investment, burnout, and casting to fabricate single and three-unit metal ones that were measured under a digital microscope by using the silicone replica technique. The measurements were verified by means of the Mann-Whitney U test (${\alpha}=.05$). RESULTS. The marginal gap was $101.9{\pm}53.4{\mu}m$ for SM group and $104.3{\pm}62.9{\mu}m$ for TUM group. The measurement of non-pontics in a single metal framework was $93.6{\pm}43.9{\mu}m$, and that of non-pontics in a three-unit metal framework was $64.9{\pm}46.5{\mu}m$. The dimension of pontics in a single metal framework was $110.2{\pm}61.4{\mu}m$, and that of pontics in a three-unit metal framework was $143.7{\pm}51.8{\mu}m$. CONCLUSION. The marginal gap was smaller for the single metal framework than for the three-unit one, which requires further improvement before it can be used for clinical purposes.

A CASE REPORT ABOUT CORRECTION OF IMPLANT POSITION AT HORIZONTAL PLANE AFTER CORTICOTOMY (피질골 절단술을 이용한 수평면에서의 임플란트의 위치 교정에 대한 치험례)

  • Choi, Bin;Oh, Hae-Soo;Kim, Jin-Chul;Kil, Yong-Gab;Kim, Kyoung-Soo;Kim, Jwa-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제29권3호
    • /
    • pp.255-261
    • /
    • 2007
  • Preface: Dental implant is important method that may solve the mastication, occlusion, esthetic, temporomandibular joint, and psychologic problem in oral and maxillofacial surgery. It is ideal that all of the implant are well positioned by adequate technique. By the way it‘s not always possible because of some anatomic, physiologic factor. In this case, If the implant can be moved to adequate position, it may be possible more esthetically and implanted patients more satisfied, but the majority of Implantists and orthodontists have thought that it is not possible. However, Implant, in fact, can be moved. and thus we can overcome the limit of implantation more. The aim of the present study was to evaluate the possibility of implant movement after corticotomy. Case report: Patient missed the upper right first molar. and implantation was done after completion of socket healing. We wait six months for osseointegration. Then, corticotomy was done under local anesthesia and close coil was used for orthodontic force. After traction during 3 weeks, we find the change of implant position at horizontal plane. we can not see the degenerative change on adjacent structure and tracted implant. there is a clinical mobility on upper right second premolar that used for anchorage but it subside spontaneously at the timing of prosthetic restoration without additional treatment. Discussion: As we could have some knowledge with this experiment, we report the case of implant movement after corticotomy and suggest a method about more esthetic implant treatment with a review of literature.

Surgical and Orthognathic Treatment of Skeletal Class III Featuring Severe Transversal and Sagittal Discrepancy: A Case Report (심한 상하악 치열궁 부조화 환자의 수술적 해결: 증례보고)

  • Ryu, Kyung-Sun;Lee, Baek-Soo;Kim, Yeo-Gab;Kwon, Yong-Dae;Choi, Byung-Joon;Ohe, Joo-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제35권2호
    • /
    • pp.124-129
    • /
    • 2013
  • Multiple segment osteotomy orthognathic surgery serves to combine the total or segmental maxillary and mandibular correction of the dentofacial deformities with concurrent procedures to provide immediate repositioning to the dento-osseous elements. In addition, splitting the palate may often be necessary to correct a functionally poor relationship of the maxilla to the mandible or the facial skeleton by realigning the maxillary arch. In this case, the discrepancy in a bimaxillary horizontal relationship and the space between the 2nd premolar and 2nd molar was retained after lengthy preoperative orthodontic treatment. However, we could correct these dento-osseous discrepancies immediately by performing midpalatal expansion, anterior segmental osteotomy and symphyseal osteotomy with bimaxillary osteotomies. If the blood supply to each segment segments was maintained and primary closure of the operation site was feasible, multiple segment osteotomy was considered as a very effective technique for treating dentofacial deformities in vertical, transverse, and sagittal dimensions with differential repositioning of all segments.

A comparative study of frictional force in self-ligating brackets according to the bracket-archwire angulation, bracket material, and wire type

  • Lee, Souk Min;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • 제45권1호
    • /
    • pp.13-19
    • /
    • 2015
  • Objective: This study aimed to compare the frictional force (FR) in self-ligating brackets among different bracket-archwire angles, bracket materials, and archwire types. Methods: Passive and active metal self-ligating brackets and active ceramic self-ligating brackets were included as experimental groups, while conventional twin metal brackets served as a control group. All brackets were maxillary premolar brackets with 0.022 inch [in] slots and a $-7^{\circ}$ torque. The orthodontic wires used included 0.018 round and $0.019{\times}0.025$ in rectangular stainless steel wires. The FR was measured at $0^{\circ}$, $5^{\circ}$, and $10^{\circ}$ angulations as the wire was drawn through the bracket slots after attaching brackets from each group to the universal testing machine. Static and kinetic FRs were also measured. Results: The passive self-ligating brackets generated a lower FR than all the other brackets. Static and kinetic FRs generally increased with an increase in the bracket-archwire angulation, and the rectangular wire caused significantly higher static and kinetic FRs than the round wire (p < 0.001). The metal passive self-ligating brackets exhibited the lowest static FR at the $0^{\circ}$ angulation and a lower increase in static and kinetic FRs with an increase in bracket-archwire angulation than the other brackets, while the conventional twin brackets showed a greater increase than all three experimental brackets. Conclusions: The passive self-ligating brackets showed the lowest FR in this study. Self-ligating brackets can generate varying FRs in vitro according to the wire size, surface characteristics, and bracket-archwire angulation.

Three-dimensional analysis of the distal movement of maxillary 1st molars in patients fitted with mini-implant-aided trans-palatal arches

  • Miresmaeili, Amirfarhang;Sajedi, Ahmad;Moghimbeigi, Abbas;Farhadian, Nasrin
    • The korean journal of orthodontics
    • /
    • 제45권5호
    • /
    • pp.236-244
    • /
    • 2015
  • Objective: The aim of this study was to investigate three-dimensional molar displacement after distalization via miniscrews and a horizontal modification of the trans-palatal-arch (TPA). Methods: The subjects in this clinical trial were 26 Class II patients. After the preparation of a complete set of diagnostic records, miniscrews were inserted between the maxillary 2nd premolar and 1st molar on the palatal side. Elastic modules connected to the TPA exerting an average force of 150-200 g/side parallel to the occlusal plane were applied. Cone-beam computed tomography was utilized to evaluate the position of the miniscrews relative to the adjacent teeth and maxillary sinus, and the direction of force relative to molar furcation. The distances from the central point of the incisive papilla to the mesiopalatal cusps of the 1st maxillary molars and the distances between the mesiopalatal cusps of the left and right molars were measured to evaluate displacement of the maxillary molars on the horizontal plane. Interocclusal space was used to evaluate vertical changes. Results: Mean maxillary 1st molar distalization was $2.3{\pm}1.1mm$, at a rate of $0.4{\pm}0.2mm/month$, and rotation was not significant. Intermolar width increased by $2.9{\pm}1.8mm$. Molars were intruded relative to the neighboring teeth, from 0.1 to 0.8 mm. Conclusions: Distalization of molars was possible without extrusion, using the appliance investigated. The intrusive component of force reduced the rate of distal movement.

Biomechanical considerations for uprighting impacted mandibular molars

  • Morita, Yukiko;Koga, Yoshiyuki;Nguyen, Tuan Anh;Yoshida, Noriaki
    • The korean journal of orthodontics
    • /
    • 제50권4호
    • /
    • pp.268-277
    • /
    • 2020
  • This case report demonstrates two different uprighting mechanics separately applied to mesially tipped mandibular first and second molars. The biomechanical considerations for application of these mechanisms are also discussed. For repositioning of the first molar, which was severely tipped and deeply impacted, a novel cantilever mechanics was used. The molar tube was bonded in the buccolingual direction to facilitate insertion of a cantilever from the buccal side. By twisting the distal end of the cantilever, sufficient uprighting moment was generated. The mesial end of the cantilever was hooked over the miniscrew placed between the canine and first premolar, which could prevent exertion of an intrusive force to the anterior portion of the dentition as a side effect. For repositioning of the second molar, an uprighting mechanics using a compression force with two step bends incorporated into a nickel-titanium archwire was employed. This generated an uprighting moment as well as a distal force acting on the tipped second molar to regain the lost space for the first molar and bring it into its normal position. This epoch-making uprighting mechanics could also minimize the extrusion of the molar, thereby preventing occlusal interference by increasing interocclusal clearance between the inferiorly placed two step bends and the antagonist tooth. Consequently, the two step bends could help prevent occlusal interference. After 2 years and 11 months of active treatment, a desirable Class I occlusion was successfully achieved without permanent tooth extraction.