• 제목/요약/키워드: premature ventricular contraction

검색결과 49건 처리시간 0.027초

Personalized Specific Premature Contraction Arrhythmia Classification Method Based on QRS Features in Smart Healthcare Environments

  • Cho, Ik-Sung
    • 전기전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.212-217
    • /
    • 2021
  • Premature contraction arrhythmia is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Most of arrhythmia clasification methods have been developed with the primary objective of the high detection performance without taking into account the computational complexity. Also, personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. Therefore it is necessary to design efficient method that classifies arrhythmia by analyzing the persons's physical condition and decreases computational cost by accurately detecting minimal feature point based on only QRS features. We propose method for personalized specific classification of premature contraction arrhythmia based on QRS features in smart healthcare environments. For this purpose, we detected R wave through the preprocessing method and SOM and selected abnormal signal sets.. Also, we developed algorithm to classify premature contraction arrhythmia using QRS pattern, RR interval, threshold for amplitude of R wave. The performance of R wave detection, Premature ventricular contraction classification is evaluated by using of MIT-BIH arrhythmia database that included over 30 PVC(Premature Ventricular Contraction) and PAC(Premature Atrial Contraction). The achieved scores indicate the average of 98.24% in R wave detection and the rate of 97.31% in Premature ventricular contraction classification.

Classification of Premature Ventricular Contraction using Error Back-Propagation

  • Jeon, Eunkwang;Jung, Bong-Keun;Nam, Yunyoung;Lee, HwaMin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.988-1001
    • /
    • 2018
  • Arrhythmia has recently emerged as one of the major causes of death in Koreans. Premature Ventricular Contraction (PVC) is the most common arrhythmia that can be found in clinical practice, and it may be a precursor to dangerous arrhythmias, such as paroxysmal insomnia, ventricular fibrillation, and coronary artery disease. Therefore, we need for a method that can detect an abnormal heart beat and diagnose arrhythmia early. We extracted the features corresponding to the QRS pattern from the subject's ECG signal and classify the premature ventricular contraction waveform using the features. We modified the weighting and bias values based on the error back-propagation algorithm through learning data. We classify the normal signal and the premature ventricular contraction signal through the modified weights and deflection values. MIT-BIH arrhythmia data sets were used for performance tests. We used RR interval, QS interval, QR amplitude and RS amplitude features. And the hidden layer with two nodes is composed of two layers to form a total three layers (input layer 0, output layer 3).

스마트 헬스케어 환경에서 복잡도를 고려한 R파 검출 및 QRS 패턴을 통한 향상된 부정맥 분류 방법 (R Wave Detection and Advanced Arrhythmia Classification Method through QRS Pattern Considering Complexity in Smart Healthcare Environments)

  • 조익성
    • 디지털산업정보학회논문지
    • /
    • 제17권1호
    • /
    • pp.7-14
    • /
    • 2021
  • With the increased attention about healthcare and management of heart diseases, smart healthcare services and related devices have been actively developed recently. R wave is the largest representative signal among ECG signals. R wave detection is very important because it detects QRS pattern and classifies arrhythmia. Several R wave detection algorithms have been proposed with different features, but the remaining problem is their implementation in low-cost portable platforms for real-time applications. In this paper, we propose R wave detection based on optimal threshold and arrhythmia classification through QRS pattern considering complexity in smart healthcare environments. For this purpose, we detected R wave from noise-free ECG signal through the preprocessing method. Also, we classify premature ventricular contraction arrhythmia in realtime through QRS pattern. The performance of R wave detection and premature ventricular contraction arrhythmia classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 premature ventricular contraction. The achieved scores indicate the average of 98.72% in R wave detection and the rate of 94.28% in PVC classification.

Assessment of Premature Ventricular Contraction Arrhythmia by K-means Clustering Algorithm

  • Kim, Kyeong-Seop
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권5호
    • /
    • pp.65-72
    • /
    • 2017
  • Premature Ventricular Contraction(PVC) arrhythmia is most common abnormal-heart rhythm that may increase mortal risk of a cardiac patient. Thus, it is very important issue to identify the specular portraits of PVC pattern especially from the patient. In this paper, we propose a new method to extract the characteristics of PVC pattern by applying K-means machine learning algorithm on Heart Rate Variability depicted in Poinecare plot. For the quantitative analysis to distinguish the trend of cluster patterns between normal sinus rhythm and PVC beat, the Euclidean distance measure was sought between the clusters. Experimental simulations on MIT-BIH arrhythmia database draw the fact that the distance measure on the cluster is valid for differentiating the pattern-traits of PVC beats. Therefore, we proposed a method that can offer the simple remedy to identify the attributes of PVC beats in terms of K-means clusters especially in the long-period Electrocardiogram(ECG).

최적 R파 검출 기반의 R피크 패턴과 RR간격을 통한 조기심실수축 분류 (Premature Ventricular Contraction Classification through R Peak Pattern and RR Interval based on Optimal R Wave Detection)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제22권2호
    • /
    • pp.233-242
    • /
    • 2018
  • 조기심실수축(Premature Ventricular Contraction) 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경망, 퍼지 이론, Support Vector Machine 등과 같은 비선형 방법이 주로 사용되어 왔다. 이러한 대부분의 방법들은 데이터의 가공 및 연산이 복잡하다. 이러한 문제점을 극복하기 위해서 최적의 R파를 검출하고 이를 통해 R피크 기반의 특징점만을 정확하게 검출함으로써 최소한의 연산량으로 PVC를 분류할 수 있는 알고리즘이 필요하다. 따라서 본 연구에서는 전처리를 통해 잡음이 제거된 심전도 신호에서 최적 문턱치에 따른 R파를 검출하고, RR간격과 R피크 패턴을 추출한다. 이후 RR간격과 R피크 패턴에 따라 PVC를 분류하였다. 제안한 방법의 우수성을 입증하기 위해 PVC가 30개 이상 포함된 MIT-BIH 9개의 레코드를 대상으로 한 R파의 평균 검출율은 99.02%의 성능을 나타내었으며, PVC 부정맥은 각각 94.85%의 평균 분류율을 나타내었다.

심전도 R-R 간격 정보를 이용한 심실조기수축 부정맥 검출 (Assessment of PVC (Premature Ventricular Contraction) Arrhythmia by R-R Interval in ECG)

  • 윤태호;이선주;김경섭;이정환
    • 한국정보전자통신기술학회논문지
    • /
    • 제2권2호
    • /
    • pp.15-21
    • /
    • 2009
  • 심실조기수축 (PVC: Premature Ventricular Contraction)은 성인에게서 가장 흔하게 발생되는 심장 부정맥 증상 중의 하나이다. 심실조기수축 부정맥이 자주 발현되는 사람의 경우 관상 동맥 질환, 고혈압 등의 심혈관계 질환이 진행되고 있을 가능성이 많고, 심실빈맥이나 심실세동으로 전이되는 경우에는 심정지 등을 유발하여 사망에 이르기 때문에 지속적으로 관찰이 필요한 증상이다. 따라서 본 연구에서는 심전도 신호의 R-R 간격 정보를 이용하여 심실조기수축 부정맥 증상을 실시간으로 검출할 수 있는 알고리즘을 구현하였으며, 또한 심전도 신호의 R-R 간격 정보와 R-peak의 진위성 여부를 판단하여 심실조기수축 및 심실조기수축 파형이 다발적으로 발생되는 PVC-RUNs를 효율적으로 검출할 수 있는 부정맥 진단 알고리즘을 제안하고자 하였다.

  • PDF

자동 조기심실수축 탐지를 위한 최소 퍼지소속함수의 추출 (Minimum Fuzzy Membership Function Extraction for Automatic Premature Ventricular Contraction Detection)

  • 임준식
    • 인터넷정보학회논문지
    • /
    • 제8권1호
    • /
    • pp.125-132
    • /
    • 2007
  • 본 논문은 가중 퍼지소속함수 기반 신경망(neural network with weighted fuzzy membership functions, NEWFM)을 이용하여 심전도(ECG) 신호로부터 조기심실수축(premature vedtricular contractions, PVC)을 자동 탐지하는 방안을 제시하고 있다. NEWFM은 MIT-BIH 데이터베이스의 부정맥 심전도를 웨이블릿 변환(wavelet transform, WT)한 계수로부터 학습하여 정상 파형과 PVC 파형을 구분한다. 비중복면적 분산 측정법을 적용하여 중요도가 가장 높은 웨이블릿 변환의 d3과 d4의 8개 계수를 추출하였다. 이들 특징입력을 3개의 실험군에 사용하여 각각 99.80%, 99.21%, 98.78%의 신뢰성 있는 전체분류율을 나타내었고, 이는 각 실험군에 대한 특징입력의 종속성이 적음을 보여준다. 추출된 8개 계수의 ECG 신호 구간과 퍼지소속함수를 제시함으로써 특징입력에 대한 명시적인 해석을 가능하게 하였다.

  • PDF

조기심실수축으로 현훈 및 흉부 불편감을 호소하는 환자에 대한 가감삼령백출산의 효과 증례보고 1례 (A Case Report of a Premature Ventricular Contraction Patient with Dizziness and Chest Discomfort Using Gagam-Samryoungbeakchul-san)

  • 조재현;홍미나;박혜림;최진용;배고은;이인;권정남;한창우;김소연;최준용;박성하;윤영주;홍진우
    • 대한한방내과학회지
    • /
    • 제37권5호
    • /
    • pp.796-805
    • /
    • 2016
  • Objective: To examine the effects of Gagam-Samryoungbeakchul-san (加減 蔘苓白朮散) on a premature ventricular contraction patient with dizziness and chest discomfort. Methods: A patient diagnosed with premature ventricular contraction was treated with herbal medicine and acupuncture. The period of admission was 15 days, and we measured the electrocardiogram before and after treatment. We evaluated the improvement in symptoms by Global Assessment (G/A), and checked the pulse rate by oximetry three times a day. We estimated the efficacy of treatment by analyzing the relationship between the average pulse rate and symptoms. Results: After Gagam-Samryoungbeakchul-san treatment and acupuncture therapy, the average pulse rate increased from 36.5 to 58. This increase in average pulse rate was accompanied by a reduction in dizziness of 40%, chest discomfort of 30%, and frequency of bigeminy in the electrocardiogram. Conclusions: This case report confirmed the effectiveness of Gagam-Samryoungbeakchul-san on premature ventricular contraction, but further study is warranted.

조기심실수축(PVC) 분류를 위한 환자 적응형 패턴 매칭 기법 (Patient Adaptive Pattern Matching Method for Premature Ventricular Contraction(PVC) Classification)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제16권9호
    • /
    • pp.2021-2030
    • /
    • 2012
  • 조기심실수축(PVC)은 가장 보편적인 부정맥으로 심실세동, 심실빈맥 등과 같은 위험한 상황을 유발할 수 있는 가능성을 가지고 있기 때문에 이의 조기 검출은 매우 중요하다. 특히 일반인들의 건강상태를 지속적으로 모니터링 해야 하는 헬스케어 시스템에서는 이를 위한 심전도 신호의 실시간 처리가 필요하다. 즉, 최소한의 연산량으로 정확한 R파를 검출하고, 대상 환자의 특징을 파악하여 PVC를 분류할 수 있는 적합한 알고리즘의 설계가 필요하다. 따라서 본 연구에서는 PVC 실시간 분류를 위한 환자 적응형 패턴 매칭 기법을 제안한다. 이를 위해 전 처리 과정과 적응 가변형 문턱 값과 윈도우를 통해 R파를 검출하였으며, 검출 대상에 따른 정상신호 군을 선별하고 이를 벗어나는 신호를 이상신호로 분류하기 위해 해쉬 함수를 통한 패턴 매칭 기법을 적용하였다. 제안한 알고리즘의 R파 검출 및 정상신호 분류 성능을 평가하기 위해서 MIT-BIH 부정맥 데이터베이스를 사용하였다. 성능평가 결과, R파는 평균 99.33%, 이상신호 분류에 대한 에러율은 0.32%로 나타났다.

평균회귀 심박변이도의 K-평균 군집화 학습을 통한 심실조기수축 부정맥 신호의 특성분석 (Characterization of Premature Ventricular Contraction by K-Means Clustering Learning Algorithm with Mean-Reverting Heart Rate Variability Analysis)

  • 김정환;김동준;이정환;김경섭
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1072-1077
    • /
    • 2017
  • Mean-reverting analysis refers to a way of estimating the underlining tendency after new data has evoked the variation in the equilibrium state. In this paper, we propose a new method to interpret the specular portraits of Premature Ventricular Contraction(PVC) arrhythmia by applying K-means unsupervised learning algorithm on electrocardiogram(ECG) data. Aiming at this purpose, we applied a mean-reverting model to analyse Heart Rate Variability(HRV) in terms of the modified poincare plot by considering PVC rhythm as the component of disrupting the homeostasis state. Based on our experimental tests on MIT-BIH ECG database, we can find the fact that the specular patterns portraited by K-means clustering on mean-reverting HRV data can be more clearly visible and the Euclidean metric can be used to identify the discrepancy between the normal sinus rhythm and PVC beats by the relative distance among cluster-centroids.