• Title/Summary/Keyword: prefetch filter

Search Result 4, Processing Time 0.016 seconds

An L1 Cache Prefetching Scheme using Excessively Aggressive Prefetchering and a Small Direct-mapped Filtering Cache (공격적인 선인출 및 직접 사상 필터링을 이용한 L1 캐시 선인출 기법)

  • Chon, Young-Suk
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.11
    • /
    • pp.836-852
    • /
    • 2006
  • This paper proposes an L1 cache prefetch scheme using an excessively aggressive hardware prefetcher and a hardware prefetch filter having a small direct-mapped filtering cache. A quantitative analysis method has been introduced and applied to analyze nonideal effects of aggressive cache prefetching. From those analysis results, the structure and algorithm of a prefetch filter has been derived and simulated, and the overall system performance has been measured using a cycle-by-cycle cache simulator. Experimental results show that the proposed scheme improves the overall system performance by 18% on the average over several benchmarks

An Active Prefetch Filtering Schemes using Exclusive Prefetch Cache (선인출 전용 캐시를 이용한 적극적 선인출 필터링 기법)

  • Chon Young-Suk;Kim Suk-il;Jeon Joong-nam
    • The KIPS Transactions:PartA
    • /
    • v.12A no.1 s.91
    • /
    • pp.41-52
    • /
    • 2005
  • Memory reference instruction caused by cache miss is the critical factor that limits the processing power of processor. Cache prefetching technique is an effective way to reduce the latency due to memory access. However, excessively aggressive prefetch leads to cache pollution and finally to cancel out the advantage of prefetch. In this study, an active prefetch filtering scheme is introduced which dynamically decides whether to commence prefetching after referring a filtering table to reduce the cache pollution due to unnecessary prefetches. For the precision filtering, an evicted address referencing scheme has been proposed where the filter directly compares the current prefetch address with previous unnecessary prefetch addresses stored in filtering table. Moreover, a small sized exclusive prefetch cache has been introduced to increase the amount of eviction of unnecessarily prefetched addresses to enhance the accuracy of dynamic filtering. The exclusive prefetch cache also prevents useful demand data from being pushed out by prefetched data, while the evicted address direct referencing scheme enables the prefetch cache to keep most of useful prefetch data within its small size. Experimental results from commonly used general and multimedia benchmarks show that the average cache miss ratio has been decreased by $13.3{\%}$ by virtue of enhanced filtering accuracy compared with conventional schemes.

Dynamic Prefetch Filtering Schemes to enhance Utilization of Data Cache (데이타 캐시의 활용도를 높이는 동적 선인출 필터링 기법)

  • Chon, Young-Suk;Kim, Suk-Il;Jeon, Joong-Nam
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.1
    • /
    • pp.30-43
    • /
    • 2008
  • Memory reference instructions such as loads or stores are critical factors that limit the processing power of processor. The prefetching technique is an effective way to reduce the latency caused from memory access. However, excessively aggressive prefetch leads to cache pollution so as to cancel out the advantage of prefetch. In this study, four filtering schemes have been compared and evaluated which dynamically decide whether to begin prefetch after referring a filtering table to decrease cache pollution. First, A bi-states scheme has been shown to analyze the lock problem of the conventional scheme, this scheme such as conventional scheme used to be N:1 mapping, but it has the two state to 1bit value of each entries. A complete state scheme has been introduced to be used as a reference for the comparative study. A block address lookup scheme has been proposed as the main idea of this paper which exhibits the most exact filtering performance. This scheme has a length of the table the same as the bi-states scheme, the contents of each entry have the fields the same as the complete state scheme recently, never referenced data block address has been 1:1 mapping a entry of the filter table. Experimental results from commonly used general benchmarks and multimedia programs show that average cache miss ratio have been decreased by 10.5% for the block address lookup scheme(BAL) compare to conventional dynamic filter scheme(2-bitSC).

A Dynamic Prefetch Filtering Schemes to Enhance Usefulness Of Cache Memory (캐시 메모리의 유용성을 높이는 동적 선인출 필터링 기법)

  • Chon Young-Suk;Lee Byung-Kwon;Lee Chun-Hee;Kim Suk-Il;Jeon Joong-Nam
    • The KIPS Transactions:PartA
    • /
    • v.13A no.2 s.99
    • /
    • pp.123-136
    • /
    • 2006
  • The prefetching technique is an effective way to reduce the latency caused memory access. However, excessively aggressive prefetch not only leads to cache pollution so as to cancel out the benefits of prefetch but also increase bus traffic leading to overall performance degradation. In this thesis, a prefetch filtering scheme is proposed which dynamically decides whether to commence prefetching by referring a filtering table to reduce the cache pollution due to unnecessary prefetches In this thesis, First, prefetch hashing table 1bitSC filtering scheme(PHT1bSC) has been shown to analyze the lock problem of the conventional scheme, this scheme such as conventional scheme used to be N:1 mapping, but it has the two state to 1bit value of each entries. A complete block address table filtering scheme(CBAT) has been introduced to be used as a reference for the comparative study. A prefetch block address lookup table scheme(PBALT) has been proposed as the main idea of this paper which exhibits the most exact filtering performance. This scheme has a length of the table the same as the PHT1bSC scheme, the contents of each entry have the fields the same as CBAT scheme recently, never referenced data block address has been 1:1 mapping a entry of the filter table. On commonly used prefetch schemes and general benchmarks and multimedia programs simulates change cache parameters. The PBALT scheme compared with no filtering has shown enhanced the greatest 22%, the cache miss ratio has been decreased by 7.9% by virtue of enhanced filtering accuracy compared with conventional PHT2bSC. The MADT of the proposed PBALT scheme has been decreased by 6.1% compared with conventional schemes to reduce the total execution time.