• Title/Summary/Keyword: prefabricated system

Search Result 138, Processing Time 0.08 seconds

Evaluation of static fracture resistances and patterns of pulpless tooth restored with poly-ether-ketone-ketone (PEKK) post (Poly-ether-ketone-ketone (PEKK) 포스트로 수복한 근관 치료 치아의 정적 파절 저항성 및 파절 형태에 관한 평가)

  • Park, Ha Eun;Lee, Cheol Won;Lee, Won Sup;Yang, Sung Eun;Lee, Su Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • Purpose: The purpose of present study was to investigate fracture strength and mode of failure of endodontically treated teeth restored with metal cast post-core system, prefabricated fiber post system, and newly introduced polyetherketoneketone (PEKK) post-core system. Materials and methods: A total of 21 mandibular premolar were randomly grouped into 3 groups of 7 each according to the post material. Group A was for metal cast post core; Group B for prefabricated glass fiber post and resin core; and Group C for milled PEKK post cores. All specimens were restored with metal crown. The fracture strength of each specimen was measured by applying a static load of 135-degree to the tooth at 2 mm/min crosshead speed using a universal testing machine. After the fracture strength measurement, the mode of failure was observed. The results were analyzed using Kruscal-Wallis test and post hoc Mann-Whitney U test at confidence interval ${\alpha}=.05$. Results: Fracture resistance of PEKK post core was lower than those of cast metal post and fiber reinforced post with composite resin core. In the aspect of fracture mode most of the root fracture occurred in the metal post core, whereas the post detachment occurred mainly in the fiber reinforced post. In the case of PEKK post core, teeth and post were fractured together. Conclusion: It is necessary to select appropriate materials of post for extensively damaged teeth restoration and clinical application of the PEKK post seems to require more research on improvement of strength.

Evaluation of marginal fidelity of copy-milled and CAD/CAM all ceramic crowns

  • Jeong Seung-Mi;Kang Dong-Wan;Wolf Christoph
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.3
    • /
    • pp.243-249
    • /
    • 2001
  • Statement of the problem. The interest in all-ceramic restorations has increased as more techniques have become available. With the introduction of machinable dental ceramics and CAD/CAM systems or Copy-milling systems there is a need for evaluating the quality levels of these new fabrication techniques. Purpose. This study was to evaluate the fitting accuracy of machined all-ceramic crowns made out of an industrially prefabricated feldspathic porcelain. Material and Methods. Three master models with different cutting depth (0.8mm/1.0mm/1.2mm)were produced using a palladium-silver alloy. A total of 36 working dies, 12 of each form, was used for the modellation of prototype resin copings and 36 additional crowns, 12 of each cutting depth, were produced by using the $CEREC^{(R)}2$ system for all crowns. The maginal fit of all 72 crowns was then evaluated on their respective master die at 54 circularly staggered points of measurement per crown under a fixation pressure of 30 N by using a computerized video image system. Results. The medians of the copy-milled $CELAY^{(R)}$ crowns ranged from 29 to $36{\mu}m$. The highest value for the marginal gap was found in group B (cutting depth 1.0mm) at $107{\mu}m$. The median for the $CEREC^{(R)}2$ crowns was found between 43.5 and $70{\mu}m$. The maximum values for all three groups ranged from $181{\mu}m$ to $286{\mu}m$. With $286{\mu}m$ the highest value for marginal gap was found in group C. the Kruskal-Wallis test and multiple comparisons analysis procedure revealed a significant influence of the production technique on the marginal fit in all three groups (p<0,02). Conclusion. 1. The $CELAY^{(R)}$ system is capable to produce all-ceramic crowns with a significantly better marginal fit than the $CEREC^{(R)}2$ system. 2. As far as premolar crowns produced with the $CEREC^{(R)}2$ system are concerned, the cutting depth has a significant influence on fitting accuracy. 3. The production of crowns with an acceptable marginal fit is possible with both systems. However, adhesive luting is recommended for milled feldspathic porcelain crowns.

  • PDF

Explicit Stress-Erection and Ultimate Load Analysis of Unit STRARCH Frame Considering Geometrically and Materially Nonlinear Characteristics (기하학적 재료적 비선형 특성을 고려한 스트라치 단위부재의 명시적 긴장설치 및 극한하중 해석)

  • Lee, Kyoung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.429-438
    • /
    • 2011
  • In this study, the explicit numerical algorithm was proposed to simulate the stress erection process and ultimate-load analysis of the strarch (stressed arch) system. The strarch system is a unique and innovative structural system and member prestress comprising prefabricated plane truss frames erected through a post-tensioning stress erection procedure. The flexible bottom chord, which has sleeve and gap details, is closed by the reaction force of the prestressing tendon. The prestress imposed on the tendon will enable the strarch system to be erected. This post-tensioning process is called "stress erection process." During this process, plastic rigid-body rotation occurs to the flexible top chord due to the excessive amount of plastic strain, and the structural characteristic is unstable. In this study, the dynamic relaxation method (DRM) was adopted to calculate the nonlinear equilibrium equation of the system, and a displacement-based finite-element-formulated filament beam element was used to simulate the nonlinear behavior of the top chord sections of the strarch system. The section of the filament beam element was composed by the amount of filaments, which can be modeled by various material models. The Ramberg-Osgood and bilinear kinematic elastic plastic material models were formulated for the nonlinear material behaviors of the filaments. The numerical results that were obtained in the present study were compared with the experiment results of the stress erection and with the results of the ultimate-load analysis of the strarch unit frame. The results of the present studies are in good agreement with the previous experiment results, and the explicit DRM enabled the analysis of the post-buckling behaviors of the strarch unit frame.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

Comparative Study of Color Correspondence According to Size of Vita CAD/CAM Ceramic Block Using ShadeEye-Ncc$^{(R)}$ System (ShadeEye$^{(R)}$ NCC system을 이용한 Vita CAD/CAM Ceramic Block의 크기에 따른 색조 일치성 비교연구)

  • Kim, Jae-Hong;Kim, Hae-Young;Kim, Woong-Chul;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.33 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • Purpose: The purpose of this study was to compare color correspondence of different sizes of Vita Mark II$^{(R)}$ and TriLuxe$^{(R)}$ Feldspar blocks. Methods: The three commercially available shades(1M2, 2M2, 3M2) of Mark II & TriLuxe blocks for the CEREC$^{(R)}$ CAD/CAM system were examined. For each of three colors, three different sizes were tested, 5 blocks each. The measurements were made using a spectrophotometer equipped with an integrating sphere using the CIE $L^*$, $a^*$, $b^*$ colorimetric system. Results: The $L^*$, $a^*$, $b^*$ value of Vita Mark II$^{(R)}$ ceramic block showed significantly higher than TriLuxe$^{(R)}$ ceramic block(p<0.05). In comparing the Vita Mark II$^{(R)}$ specimen of the three different shade, color differences between materials(${\Delta}E^*$) showed the lowest value of 2.09, and the highest was 2.24. ${\Delta}E^*$ values of the materials of Vita Mark II$^{(R)}$ were higher than 2. As the size of ceramic block differed, the color correspondence of Vita Mark II$^{(R)}$ showed statistically significant difference but, this result is clinically acceptable. Conclusion: All the different sizes of the different shades of Vita TriLuxe$^{(R)}$ blocks for the CEREC$^{(R)}$ system showed the high degree of color correspondence necessary in industrially prefabricated CAD/CAM blocks. The results of the present study suggested that it would be necessary to establish the reproducible and constant color specification system for an esthetic restoration.

Full mouth rehabilitation with implant fixed prostheses using POP bow system and 3D printing gothic arch tracer in a patient with unilateral facial nerve palsy (편측성 안면 신경마비 환자에서 3D printing gothic arch tracer와 POP bow system을 이용한 전악 임플란트 고정성 보철 수복)

  • Seong-Yun Jeong;Chang-Mo Jeong;Mi-Jung Yoon;Jung-Bo Huh;So-Hyoun Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.3
    • /
    • pp.201-214
    • /
    • 2024
  • In patients with unstable mandibular movements who are accompanied by involuntary facial muscle movements and asymmetrical changes in the facial features, many difficulties exist in determining the vertical dimension of occlusion, recording centric relation, and transferring information about the occlusal plane. In this case, for a patient with unilateral facial nerve palsy who was edentulous for a long period of time, a CAD-CAM provisional prosthesis was fabricated using a 3D printing customized gothic arch tracer and a prefabricated occlusal plane recorder, the POP bow system, to achieve a stable interarch relationship. Afterwards, a full mouth implant fixed prosthesis was fabricated by delivering an appropriate vertical dimension of occlusion, a reproducible centric relation, and a correct three-dimensional occlusal plane, and continuous maintenance was performed to restore functional and aesthetic oral health to the patient.

Compressive Behavior of Steel Plate-Concrete Structures using Eco-Oriented Cement Concrete (친환경시멘트 콘크리트를 사용한 강판콘크리트구조의 압축거동)

  • Kang, Cheol-Kyu;Choi, Byong-Jeong;Jeoung, Beak-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.583-593
    • /
    • 2012
  • The domestic research of the steel plate concrete structures have been focused on the nuclear structures requiring much strong resistance. There are many advantages in the steel plate-concrete structures such as the possibility of prefabricated production and modular construction. This research tried to establish some basic design information of SC structures toward mid to low-rise general buildings with low strength. To reduce the strength mentioned, the some of the cement in weight was replaced by the soils which are traditional and environmental oriented material where the new system can be used to general buildings. This paper studied on the compressive characteristics, effective length factors, buckling loading, steel plate buckling, and stud strength using the compression member subjected to the concentrated compression loadings.

Fracture resistances of zirconia, cast Ni-Cr, and fiber-glass composite posts under all-ceramic crowns in endodontically treated premolars

  • Habibzadeh, Sareh;Rajati, Hamid Reza;Hajmiragha, Habib;Esmailzadeh, Shima;Kharazifard, Mohamadjavad
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.170-175
    • /
    • 2017
  • PURPOSE. The aim of the present study was to evaluate the fracture resistances of zirconia, cast nickel-chromium alloy (Ni-Cr), and fiber-composite post systems under all-ceramic crowns in endodontically treated mandibular first premolars. MATERIALS AND METHODS. A total of 36 extracted human mandibular premolars were selected, subjected to standard endodontic treatment, and divided into three groups (n=12) as follows: cast Ni-Cr post-and-core, one-piece custom-milled zirconia post-and-core, and prefabricated fiber-glass post with composite resin core. Each specimen had an all-ceramic crown with zirconia coping and was then loaded to failure using a universal testing machine at a cross-head speed of 0.5 mm/min, at an angle of 45 degrees to the long axis of the roots. Fracture resistance and modes of failure were analyzed. The significance of the results was assessed using analysis of variance (ANOVA) and Tukey honest significance difference (HSD) tests (${\alpha}=.05$). RESULTS. Fiber-glass posts with composite cores showed the highest fracture resistance values ($915.70{\pm}323N$), and the zirconia post system showed the lowest resistance ($435.34{\pm}220N$). The corresponding mean value for the Ni-Cr casting post and cores was reported as $780.59{\pm}270N$. The differences among the groups were statistically significant (P<.05) for the zirconia group, as tested by ANOVA and Tukey HSD tests. CONCLUSION. The fracture resistance of zirconia post-and-core systems was found to be significantly lower than those of fiber-glass and cast Ni-Cr post systems. Moreover, catastrophic and non-restorable fractures were more prevalent in teeth restored by zirconia posts.

Neural Network Model for Partial Discharge Pattern Analysis of XLPE/EPR Interface (XLPE/EPR 계면의 부분방전 패턴 분석을 위한 신경망 모형)

  • Cho, Kyung-Soon
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.357-364
    • /
    • 2005
  • The prefabricated type used generally in Korea to join cable runs on new installations or to repair broken Cable runs on existing installations, because installation is very simple and save time. This type is a permanent, shielded and submersible cable joint for direct burial or vault application. It confirms to the requirements of IEEE std. 404-1993 by factory testing, but many problems of insulated cable systems are caused by internal defects of the joint part which have to be mounted ensile. Faults arise from impurities or voids. A suitable solution for a monitoring of cable joints during the after-laying test and service is partial discharge detection. Specimen obtained 1mm thickness from the insulation of real power cable and cable joint. <중략>The partial discharges are measured to determine their time dependence for 60 minutes and the influence of applied electrical stress under 30kV. $\Phi-q-n$ properties were measured using detection impedance, high pass filter and computerized data acquisition system. Statistic Value like maximum charge, repetition rate, average charge, etc. are calculated. It is possible to quantitative analysis of $\Phi-q-n$ properties from this statistic value and pattern analysis.

  • PDF

Neural Network Model for Partial Discharge Pattern Analysis of XLPE/EPR Interface (XLPE/EPR 계면의 부분방전 패턴 분석을 위한 신경망 모형)

  • Cho Kyung-Soon
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.279-286
    • /
    • 2005
  • The prefabricated type used generally in Korea to join cable runs on new installations or to repair broken Cable runs on existing installations, because installation is very simple and save time. This type is a permanent, shielded and submersible cable joint for direct burial or vault application. It confirms to the requirements of IEEE std. 404-1993 by factory testing, but many problems of insulated cable systems are caused by internal defects of the joint part which have to be mounted ensile. Faults arise from impurities or voids. A suitable solution for a monitoring of cable joints during the after-laying test and service is partial discharge detection. <중략> $\Phi-q-n$ properties were measured using detection impedance, high pass filter and computerized data acquisition system. Statistic Value like maximum charge, repetition rate, average charge, etc. are calculated. It is possible to quantitative analysis of $\Phi-q-n$ properties from this statistic value and pattern analysis.

  • PDF