• Title/Summary/Keyword: prefabricated precast concrete

Search Result 54, Processing Time 0.022 seconds

A Study on Plant Certification Program for Precast Concrete Products (프리캐스트 콘크리트 제품의 공장 인증 제도에 관한 연구)

  • Kim, Hyoung-Do;Lee, Sang-Sup;Park, Keum-Sung;Bae, Kyu-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.131-138
    • /
    • 2014
  • The steel structure fabrication plant certification program was enacted as a part of the construction technology management act, article 24-3, to improve the quality of steel construction after the decay falling accident of Seongsu Bridge in 1994. However, the national certification program for structural precast concrete that is a prefabricated construction products produced by casting concrete in plant is not implemented yet. So, to introduce the proper certification system for precast concrete, the quality certification programs of North America, Europe and Japan are surveyed. In North America, the organizations that manage the plant certification programs are PCI, NPCA, CPCI and so on. Sales of precast concrete elements in Europe are governed by the construction products regulation 305/2011. Therefore, CE marking is mandatory from July 2013 for all construction products including precast concrete. In Japan, precast concrete products used in civil engineering are certificated by JIS mark, product certification system and plants for manufacturing precast concrete building elements are audited by Japan Prefabricated Construction Suppliers and Manufacturers Association. Based on these survey studies, in this paper is described an adaptation of precast concrete plant certification to comport with the certification system in Korea.

Cracking of Precast Bridge Decks with Loop Joints (루프 이음 프리캐스트 교량 바닥판의 균열)

  • Ryu Hyung Keun;Chang Sung Pil;Kim Young Jin;Kim Byung Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.750-753
    • /
    • 2004
  • In this paper, experimental test on the full scale model of steel and concrete composite plate girder with prefabricated slabs under hogging moments was conducted cautiously and observed in order to study cracking in precast decks. Details of prefabricated slab transverse joints were determined from previous research. A test specimen was overhanging simple support beam, totally 28 meter length. Through the 4-point flexural test, the behaviour of the composite girder under hogging moments was observed. From the test results, crack development and crack widths were observed.

  • PDF

Flexural Behavior of Continuous Composite Bridges with Precast Concrete Decks

  • Chung, Chul-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.625-633
    • /
    • 2003
  • For the construction of open-topped steel box girder bridges, prefabricated concrete slab could offer several advantages over cast-in-situ deck including good quality control, fast construction, and elimination of the formwork for concrete slab casting. However, precast decks without reinforcements at transverse joints between precast slabs should be designed to prevent the initiation of cracking at the joints, because the performance of the joint is especially crucial for the integrity of a structural system. Several prestressing methods are available to introduce proper compression at the joints, such as internal tendons, external tendons and support lowering after shear connection. In this paper, experimental results from a continuous composite bridge model with precast decks are presented. Internal tendons and external tendons were used to prevent cracking at the joints. Judging from the tests, precast decks in negative moment regions have the whole contribution to the flexural stiffness of composite section under service loads if appropriate prestressing is introduced. The validity of the calculation of a cracking load fur serviceability was presented by comparing an observed cracking load and the calculated value. Flexural behavior of the continuous composite beam with external prestressing before and after cracking was discussed by using the deflection and strain data.

A Study on Pretension Girder Method using Precast Concrete bed System (프리캐스트 콘크리트 제작대를 이용한 프리텐션 거더 제작 공법)

  • Ma, Hyang-Wook;Oh, Hyun-Chul;Kim, In-Gyu;Kim, Young-Jin;Kim, Keun-Taek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.463-464
    • /
    • 2010
  • Pre-tension Girder using Precast Concrete bed System have advantage of simplifying construction process, reducing prestress-loss and cost compared with post-tension Girder. That is because it is possible to produce pre-tension Girder by prefabricated concrete bed in site not factory. This paper present pre-tension girder method using precast concrete bed system and field application.

  • PDF

Test for the influence of socket connection structure on the seismic performance of RC prefabricated bridge piers

  • Yan Han;Shicong Ding;Yuxiang Qin;Shilong Zhang
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.89-97
    • /
    • 2023
  • In order to obtain the impact of socket connection interface forms and socket gap sizes on the seismic performance of reinforced concrete (RC) socket prefabricated bridge piers, quasi-static tests for three socket prefabricated piers with different column-foundation connection interface forms and reserved socket gap sizes, as well as to the corresponding cast-in-situ reinforced concrete piers, were carried out. The influence of socket connection structure on various seismic performance indexes of socket prefabricated piers was studied by comparing and analyzing the hysteresis curve and skeleton curve obtained through the experiment. Results showed that the ultimate failure mode of the socket prefabricated pier with circumferential corrugated treatment at the connection interface was the closest to that of the monolithic pier, the maximum bearing capacity was slightly less than that of the cast-in-situ pier but larger than that of the socket pier with roughened connection interface, and the displacement ductility and accumulated energy consumption capacity were smaller than those of socket piers with roughened connection interface. The connection interface treatment form had less influence on the residual deformation of socket prefabricated bridge piers. With the increase in the reserved socket gap size between the precast pier column and the precast foundation, the bearing capacity of the prefabricated socket bridge pier component, as well as the ductility and residual displacement of the component, would be reduced and had unfavorable effect on the energy dissipation property of the bridge pier component.

Design of Prestress for prefabricated bridge piers (조립식 교각의 프리스트레스 설계)

  • Kim, Hyun-Ho;Shim, Chang-Su;Chang, Chul-Hun;Kim, Cheol-Hwan;An, Dong-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.225-228
    • /
    • 2006
  • Fast construction of bridge structures is a new trend of bridge design. Accelerated bridge construction includes the construction of superstructures and substructures. In order to reduce the construction time for substructures, precast prestressed bridge piers are increasingly applied in other countries. One of the main concern in the design of precast piers is the determination of the axial prestress forces. The behavior of the piers should be investigated under service loadings and ultimate conditions. In this paper, the magnitude of prestress is calculated to control the stress at the joint of precast piers. Considering long-term behavior of prestressed piers, P-M diagrams for precast piers are obtained to verify the ultimate behavior of the piers. Based on these studies, precast piers are applied to the light-railway bridge piers.

  • PDF

Inelastic Behavior of Continuous Precast Composite Slabs (연속 프리캐스트 합성바닥판의 비탄성 거동)

  • Shim Chang-Su;Chung Young Soo;Min Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.447-450
    • /
    • 2005
  • A prefabricated composite hollow slab with perforated I-beams was suggested for the replacement of deteriorated concrete decks or the construction of new composite bridges with long-span slabs. Composite slabs with embedded I-beams have considerably higher stiffness and strength. For the application of prefabricated composite slabs to bridges, joints between slabs should satisfy the requirements of the ultimate limit state and the serviceability limit state. In this paper, three types of the detail for loop joints were selected and their structural performance in terms of strength and crack control was investigated through static tests on continuous composite slabs. A main parameter was the detail of the joint, such as an ordinary loop joint and loop joint with additional reinforcements. Even though there was no connection of the steel beams at the joints, the loop joints showed good performance in terms of strength. In terms of crack control, the loop joint with additional reinforcements showed better performance. In ultimate limit state, the continuous composite slabs showed good moment redistribution and ductility.

  • PDF

A new precast wall connection subjected to monotonic loading

  • Vaghei, Ramin;Hejazi, Farzad;Taheri, Hafez;Jaafar, Mohd Saleh;Ali, Abang Abdullah Abang
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.1-27
    • /
    • 2016
  • Final construction project cost is significantly determined by construction rate. The Industrialized Building System (IBS) was promoted to enhance the importance of prefabrication technology rather than conventional methods in construction. Ensuring the stability of a building constructed by using IBS is a challenging issue. Accordingly, the connections in a prefabricated building have a basic, natural, and essential role in providing the best continuity among the members of the building. Deficiencies of conventional precast connections were observed when precast buildings experience a large induced load, such as earthquakes and other disasters. Thus, researchers aim to determine the behavior of precast concrete structure with a specific type of connection. To clarify this problem, this study investigates the capacity behavior of precast concrete panel connections for industrial buildings with a new type of precast wall-to-wall connection (i.e., U-shaped steel channel connection). This capacity behavior is compared with the capacity behavior of precast concrete panel connections for industrial buildings that used a common approach (i.e., loop connection), which is subjected to monotonic loading as in-plane and out-of-plane loading by developing a finite element model. The principal stress distribution, deformation of concrete panels and welded wire mesh (BRC) reinforcements, plastic strain trend in the concrete panels and connections, and crack propagations are investigated for the aforementioned connection. Pushover analysis revealed that loop connections have significant defects in terms of strength for in-plane and out-of-plane loads at three translational degrees of freedom compared with the U-shaped steel channel connection.

Nonlinear Finite Element Analysis of Precast Pier Coping (프리캐스트 교각 코핑부의 비선형 유한요소해석)

  • Cheon, Ju-Hyoun;Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.153-154
    • /
    • 2010
  • For completing an fully optimized and prefabricated substructure system of bridge, developing pier of precast segment PSC which equip the connection structure of shear resistance and precast foundation are conducted previously. Specimens of coping of bridge were developed and customized, and experiments were performed. The result of the experiment through the result from a reliable non-linear analysis program (RCAHEST) were compared and analyzed and evaluated the stability and ultimate behavior of coping of precast pier.

  • PDF

Flexural analysis of transverse joints of prefabricated T-girder bridge superstructure

  • Kye, Seungkyung;Jung, Hyung-Jo;Park, Sun-Kyu
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.89-102
    • /
    • 2021
  • Rapid construction of prefabricated bridges requires minimizing the field work of precast members and ensuring structural stability and constructability. In this study, we conducted experimental and analytical investigations of transverse joints of prefabricated T-girder bridge superstructures to verify the flexural performance and serviceability. In addition, we conducted parametric studies to identify the joint parameters. The results showed that both the segmented and continuous specimens satisfied the ultimate flexural strength criterion, and the segmented specimen exhibited unified behavior, with the flexural strength corresponding to that of the continuous specimen. The segmented specimens exhibited elastic behavior under service load conditions, and the maximum crack width satisfied the acceptance criteria. The reliability of the finite element model of the joint was verified, and parametric analysis of the convexity of the joint section and the compressive strength of the filler concrete showed that the minimum deflection and crack width occurred at a specific angle. As the strength of the filler concrete increased, the deflection and crack width decreased. However, we confirmed that the reduction in the crack width was hardly observed above a specific strength. Therefore, a design suitable for prefabricated bridges and accelerated construction can be achieved by improving the joint specifications based on the required criteria.