• Title/Summary/Keyword: prefabricated bridge pier

Search Result 11, Processing Time 0.017 seconds

Test for the influence of socket connection structure on the seismic performance of RC prefabricated bridge piers

  • Yan Han;Shicong Ding;Yuxiang Qin;Shilong Zhang
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.89-97
    • /
    • 2023
  • In order to obtain the impact of socket connection interface forms and socket gap sizes on the seismic performance of reinforced concrete (RC) socket prefabricated bridge piers, quasi-static tests for three socket prefabricated piers with different column-foundation connection interface forms and reserved socket gap sizes, as well as to the corresponding cast-in-situ reinforced concrete piers, were carried out. The influence of socket connection structure on various seismic performance indexes of socket prefabricated piers was studied by comparing and analyzing the hysteresis curve and skeleton curve obtained through the experiment. Results showed that the ultimate failure mode of the socket prefabricated pier with circumferential corrugated treatment at the connection interface was the closest to that of the monolithic pier, the maximum bearing capacity was slightly less than that of the cast-in-situ pier but larger than that of the socket pier with roughened connection interface, and the displacement ductility and accumulated energy consumption capacity were smaller than those of socket piers with roughened connection interface. The connection interface treatment form had less influence on the residual deformation of socket prefabricated bridge piers. With the increase in the reserved socket gap size between the precast pier column and the precast foundation, the bearing capacity of the prefabricated socket bridge pier component, as well as the ductility and residual displacement of the component, would be reduced and had unfavorable effect on the energy dissipation property of the bridge pier component.

Digital engineering models for prefabricated bridge piers

  • Nguyen, Duy-Cuong;Park, Seong-Jun;Shim, Chang-Su
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.35-47
    • /
    • 2022
  • Data-driven engineering is crucial for information delivery between design, fabrication, assembly, and maintenance of prefabricated structures. Design for manufacturing and assembly (DfMA) is a critical methodology for prefabricated bridge structures. In this study, a novel concept of digital engineering model that combined existing knowledge of DfMA with object-oriented parametric modeling technologies was developed. Three-dimensional (3D) geometry models and their data models for each phase of a construction project were defined for information delivery. Digital design models were used for conceptual design, including aesthetic consideration and possible variation during fabrication and assembly. The seismic performance of a bridge pier was evaluated by linking the design parameters to the calculated moment-curvature curves. Control parameters were selected to consider the tolerance control and revision of the digital models. Digitalized fabrication of the prefabricated members was realized using the digital fabrication model with G-code for a concrete printer or a robot. The fabrication error was evaluated and the design digital models were updated. The revised fabrication models were used in the preassembly simulation to guarantee constructability. For the maintenance of the bridge, the as-built information was defined for the prefabricated bridge piers. The results of this process revealed that data-driven information delivery is crucial for lifecycle management of prefabricated bridge piers.

Optimal Design of Prefabricated Passenger Car-overpass Structures (승용차 전용 조립식 고가도로의 최적설계)

  • 조성배;김영우;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.163-170
    • /
    • 2004
  • The main objective of this research is to determine the optimal sections of infrastructure (the pier and foundation) for orthotropic steel decks which is a part of prefabricated passenger car overpasses. Since the bridge to be designed allows only passenger cars, design loads are determined according to this condition. The total volume of the infrastructure is formulated as the objective function and the design constraints are based on the 'Korean Bridge Design Code' and 'Design Manual of Steel Framed Pier'. The programs used in this research are MATLAB 6.5 and MIDAS CIVIL.

  • PDF

Definition of Digital Engineering Models for DfMA of Prefabricated Bridges (프리팹 교량의 DfMA를 위한 디지털엔지니어링 모델 정의)

  • Duy-Cuong, Nguyen;Roh, Gi-Tae;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.12 no.1
    • /
    • pp.10-22
    • /
    • 2022
  • Prefabricated bridges require strict management of tolerance during fabrication and assembly. In this paper, digital engineering models for prefabricated bridge components such as deck, girder, pier, abutment are suggested to support information delivery through the life-cycle of the bridge. Rule-based modeling is used to define geometry of the members considering variable dimensions due to fabrication and assembly error. DfMA(design for manufacturing and assembly) provides the rules for ease of fabrication and assembly. The digital engineering model consists of geometry, constraints and corresponding parameters for each phase. Alignment and control points are defined to manage tolerances of the prefabricated bridge during fabrication and assembly. Quality control by digital measurement of dimensions was also considered in the model definition. A pilot bridge was defined virtually to validate the suggested digital engineering models. The digital engineering models for DfMA showed excellent potential to realize prefabricated bridges.

Seismic performance of prefabricated bridge columns with combination of continuous mild reinforcements and partially unbonded tendons

  • Koem, Chandara;Shim, Chang-Su;Park, Sung-Jun
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.541-557
    • /
    • 2016
  • Prefabricated bridge substructures provide new possibility for designers in terms of efficiency of creativity, fast construction, geometry control and cost. Even though prefabricated bridge columns are widely adopted as a substructure system in the bridge construction project recently, lack of deeper understanding of the seismic behavior of prefabricated bridge substructures cause much concern on their performance in high seismic zones. In this paper, experimental research works are presented to verify enhanced design concepts of prefabricated bridge piers. Integration of precast segments was done with continuity of axial prestressing tendons and mild reinforcing bars throughout the construction joints. Cyclic tests were conducted to investigate the effects of the design parameters on seismic performance. An analytical method for moment-curvature analysis of prefabricated bridge columns is conducted in this study. The method is validated through comparison with experimental results and the fiber model analysis. A parametric study is conducted to observe the seismic behavior of prefabricated bridge columns using the analytical study based on strain compatibility method. The effects of continuity of axial steel and tendon, and initial prestressing level on the load-displacement response characteristics, i.e., the strain of axial mild steels and posttensioned tendon at fracture and concrete crushing strain at the extreme compression fiber are investigated. The analytical study shows the layout of axial mild steels and posttensioned tendons in this experiment is the optimized arrangement for seismic performance.

Analysis of seismic behaviors of digging well foundation with prefabricated roots

  • Wang, Yi;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Gao, Jianqiang;Lu, Jinhua;Zhang, Yongliang
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.641-652
    • /
    • 2021
  • Digging well foundation has been widely used in railway bridges due to its good economy and reliability. In other instances, bridges with digging well foundation still have damage risks during earthquakes. In this study, a new type of digging well foundation with prefabricated roots was proposed to reduce earthquake damage of these bridges. Quasi-static tests were conducted to investigate the failure mechanism of the root digging well foundation, and then to analyze seismic behaviors of the new type well foundation. The testing results indicated that these prefabricated roots could effectively limit the rotation and uplift of the digging well foundation and increase the lateral bearing capacity of the digging well foundation. The elastic critical load and ultimate load can be increased by 69% and 36% if prefabricated roots were added in the digging well foundation. The prefabricated roots drived more soil around the foundation to participate in working, the stiffness of the bridge pier with root digging well foundation was improved. Moreover, the root participation could improve the energy dissipation capacity of soil-foundation-pier interaction system. The conclusions obtained in this paper had important guiding significance for the popularization and application of the digging well foundation with prefabricated roots in earthquake-prone zones.

Nonlinear Finite Element Analysis of Precast Pier Coping (프리캐스트 교각 코핑부의 비선형 유한요소해석)

  • Cheon, Ju-Hyoun;Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.153-154
    • /
    • 2010
  • For completing an fully optimized and prefabricated substructure system of bridge, developing pier of precast segment PSC which equip the connection structure of shear resistance and precast foundation are conducted previously. Specimens of coping of bridge were developed and customized, and experiments were performed. The result of the experiment through the result from a reliable non-linear analysis program (RCAHEST) were compared and analyzed and evaluated the stability and ultimate behavior of coping of precast pier.

  • PDF

Nonlinear Finite Element Analysis of Prefabricated PSC Columns with Precast Footing (프리캐스트 기초부를 갖는 조립식 PSC 교각의 비선형 유한요소 해석)

  • Park, Young-Gi;Kim, Tae-Hoon;Cheon, Ju-Hyoun;Park, Se-Jin;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.177-178
    • /
    • 2009
  • This study is based on the precast concrete bridge which recently became important field of bridge construction. to develop the connecting technology of pier and footing, the purpose of this study is to verify applicability through the result of nonlinear analysis.

  • PDF

Automated Digital Engineering Modeling of Prefabricated Bridges with Parameterized Straight Alignments (직선교량에 대한 디지털엔지니어링 모델의 선형연동 프로그램 개발)

  • Choi, Jae-Woong;Kang, Jeon-Yong;Kim, Hyun-Min
    • Journal of KIBIM
    • /
    • v.10 no.4
    • /
    • pp.40-49
    • /
    • 2020
  • This report describes the development of a program that can be linked to an alignment and extracts related information using a prefab structured digital engineering model. The subject bridge was set as a straight alignment, the Superstructure type as Precast girder and the Substructure type as Precast pier and Cast-in-situ Abutment. We identified the variables required to create a digital engineering model and reviewed them to create the digital engineering model by entering them as numerical values in the program. In addition, it is configured so that the variables linked to the alignment can be entered numerically. The quantity takeoff can be calculated when the design is complete. The purpose of the program development presented in this report is to enable the designers to select the optimal alternative by designing a bridge that best fits their current situation, extracting the relevant information and then by providing it to the manufacturer and construction company.

Evaluation of Seismic Performance of Prefabricated Bridge Piers with a Circular Solid Section (중실원형단면 조립식 교각의 내진 성능 평가)

  • Kim, Hyun-Ho;Shim, Chang-Su;Chung, Chul-Hun;Kim, Cheol-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.23-31
    • /
    • 2007
  • Fast bridge construction has been increasingly needed according to the changed construction environment. This paper deals with quasi-static tests on precast piers for bridge substructures. One of the most crucial aspect of the design of precast prestressed concrete bridge piers is the seismic performance. Seven precast pier elements were fabricated. The amount of prestressing bars, the prestressing force, and the location and number of the joint between segments were the main test parameters. Test results showed that the introduced axial prestress made the restoration of the deformation under small lateral displacement and minor damage. However, there was no effect of the prestress when the plastic hinge region was damaged severely due to large lateral displacement. Judging from the observed damage, the design of the joints in precast piers should be done for the first joint between the foundation and the pier segment. The amount of the necessary prestressing steel may be designed to satisfy the P-M diagram according to the service loads, not by having the same steel ratio as normal RC bridge piers. In order to satisfy the current required displacement ductility, it is necessary to have the same amount of the transverse reinforcements as RC piers. As the steel ratio increases, the energy absorption capacity increases. The number of joints showed a little influence on the energy absorption capacity.