• Title/Summary/Keyword: prefabricated

Search Result 469, Processing Time 0.025 seconds

Seismic performance of prefabricated bridge columns with combination of continuous mild reinforcements and partially unbonded tendons

  • Koem, Chandara;Shim, Chang-Su;Park, Sung-Jun
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.541-557
    • /
    • 2016
  • Prefabricated bridge substructures provide new possibility for designers in terms of efficiency of creativity, fast construction, geometry control and cost. Even though prefabricated bridge columns are widely adopted as a substructure system in the bridge construction project recently, lack of deeper understanding of the seismic behavior of prefabricated bridge substructures cause much concern on their performance in high seismic zones. In this paper, experimental research works are presented to verify enhanced design concepts of prefabricated bridge piers. Integration of precast segments was done with continuity of axial prestressing tendons and mild reinforcing bars throughout the construction joints. Cyclic tests were conducted to investigate the effects of the design parameters on seismic performance. An analytical method for moment-curvature analysis of prefabricated bridge columns is conducted in this study. The method is validated through comparison with experimental results and the fiber model analysis. A parametric study is conducted to observe the seismic behavior of prefabricated bridge columns using the analytical study based on strain compatibility method. The effects of continuity of axial steel and tendon, and initial prestressing level on the load-displacement response characteristics, i.e., the strain of axial mild steels and posttensioned tendon at fracture and concrete crushing strain at the extreme compression fiber are investigated. The analytical study shows the layout of axial mild steels and posttensioned tendons in this experiment is the optimized arrangement for seismic performance.

A Feasibility Study of Safety Cetification for Finished Product of Febricated Temporary (조립식 가설기자재의 완성품에 대한 안전인증 타당성 연구)

  • Lee, Jeong-Seok;Choe, Jin-U
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.11a
    • /
    • pp.39-48
    • /
    • 2013
  • Recently, the using of prefabricated temporary equipments is increasing in the industrial field because it can reduce the installation and dismantling period. The various types of prefabricated temporary equipments are manufacturing with various materials in domestic and overseas countries. However, those equipments should win the safety certificate according to the "Governmental Notification about Safety Certification" which regulate the member-based safety certification. It tends to cause over performance of temporary equipments because it couldn't consider structural benefit of the prefabricated products. As the result of this study, it is concluded that the establishment of new safety certification standard for the prefabricated temporary equipments is resonable and the movable scaffold is appropriate for those prefabricated temporary equipment. The movable scaffolds are using as single structure and cannot be expands horizontally. Other types of temporary equipments are using as complex structure which can freely expand horizontally according to the main structure. From the results of the study, the standard of vertical compression performance of prefabricated movable scaffolds should be more than double the performance of single main frame. Other test items of safety certification standard should be fixed when the Notification is amended. The prefabricated temporary equipments which are adopted for the safety standard on assembled structure should be used, moved and kept in assembled state and not separated discretionally. The establishment of new standard for the assembled structure based on this study leads to the development of various types of temporary equipments using structural efficiency of prefabricated structure.

  • PDF

Characteristics of EMR emitted by coal and rock with prefabricated cracks under uniaxial compression

  • Song, Dazhao;You, Qiuju;Wang, Enyuan;Song, Xiaoyan;Li, Zhonghui;Qiu, Liming;Wang, Sida
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.49-60
    • /
    • 2019
  • Crack instability propagation during coal and rock mass failure is the main reason for electromagnetic radiation (EMR) generation. However, original cracks on coal and rock mass are hard to study, making it complex to reveal EMR laws and mechanisms. In this paper, we prefabricated cracks of different inclinations in coal and rock samples as the analogues of the native cracks, carried out uniaxial compression experiments using these coal and rock samples, explored, the effects of the prefabricated cracks on EMR laws, and verified these laws by measuring the surface potential signals. The results show that prefabricated cracks are the main factor leading to the failure of coal and rock samples. When the inclination between the prefabricated crack and axial stress is smaller, the wing cracks occur first from the two tips of the prefabricated crack and expand to shear cracks or coplanar secondary cracks whose advance directions are coplanar or nearly coplanar with the prefabricated crack's direction. The sample failure is mainly due to the composited tensile and shear destructions of the wing cracks. When the inclination becomes bigger, the wing cracks appear at the early stage, extend to the direction of the maximum principal stress, and eventually run through both ends of the sample, resulting in the sample's tensile failure. The effect of prefabricated cracks of different inclinations on electromagnetic (EM) signals is different. For samples with prefabricated cracks of smaller inclination, EMR is mainly generated due to the variable motion of free charges generated due to crushing, friction, and slippage between the crack walls. For samples with larger inclination, EMR is generated due to friction and slippage in between the crack walls as well as the charge separation caused by tensile extension at the cracks' tips before sample failure. These conclusions are further verified by the surface potential distribution during the loading process.

Prefabricated-HSPRCC panels for retrofitting of existing RC members-a pioneering study

  • Bedirhanoglu, Idris
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.1-25
    • /
    • 2015
  • The main goal of this study was to develop a convenient strengthening technique for retrofitting of reinforced concrete members. For this purpose a new retrofitting material so-called prefabricated-HSPRCC (high performance steel plate reinforced cementitious composite) panel was developed by using high performance concrete and perforated steel plate. Prefabricated-HSPRCC composes advantages of steel and high performance concrete. The prefabricated-HSPRCC panels were either only bonded on the specimens using epoxy mortar or anchored to the specimen by steel bolts as well as bonding. Effect of different variations such as prefabricated-HSPRCC panel thicknesses, steel plate thicknesses, puncture orientation of perforated steel plate, existence of anchorage etc. were studied through a simple experimental work. The behaviour of the specimens under vertical point load was also studied by using simple mechanics. The retrofitted specimens were found to exhibit much better performance both in terms of strength and deformation capability. The anchorage application was found to positively affect this improved performance. Furthermore, as a result of the tests the best parameters of prefabricated-HSPRCC plate for improving strength and deformation capacities were determined.

Definition of Digital Engineering Models for DfMA of Prefabricated Bridges (프리팹 교량의 DfMA를 위한 디지털엔지니어링 모델 정의)

  • Duy-Cuong, Nguyen;Roh, Gi-Tae;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.12 no.1
    • /
    • pp.10-22
    • /
    • 2022
  • Prefabricated bridges require strict management of tolerance during fabrication and assembly. In this paper, digital engineering models for prefabricated bridge components such as deck, girder, pier, abutment are suggested to support information delivery through the life-cycle of the bridge. Rule-based modeling is used to define geometry of the members considering variable dimensions due to fabrication and assembly error. DfMA(design for manufacturing and assembly) provides the rules for ease of fabrication and assembly. The digital engineering model consists of geometry, constraints and corresponding parameters for each phase. Alignment and control points are defined to manage tolerances of the prefabricated bridge during fabrication and assembly. Quality control by digital measurement of dimensions was also considered in the model definition. A pilot bridge was defined virtually to validate the suggested digital engineering models. The digital engineering models for DfMA showed excellent potential to realize prefabricated bridges.

Prefabricated Building Development Status and Policy Trend in China (중국 조립식 건축 발전현황 및 정책 동향)

  • Qian, Ya-Ru;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.29-30
    • /
    • 2023
  • In view of the labor-intensive characteristics of the construction industry and the persistent negative image, the problems of continuous aging and manpower shortage in the domestic construction industry are becoming more and more serious, which must be solved for the survival of the domestic construction industry. China has made certain achievements in prefabricated buildings. Through this research, we describe the development process of China's prefabricated buildings in different stages, and analyze the necessary policy promotion and standard support in the development of prefabricated buildings. Analyze and examine the necessary conditions for China's prefabricated building achievements and success factors, and make better proposals for the development of the construction industry in South Korea.

  • PDF

Pushover analysis of prefabricated structures with various partially fixity rates

  • Akkose, Mehmet;Sunca, Fezayil;Turkay, Alperen
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.21-32
    • /
    • 2018
  • Prefabricated structures are constructed by bolted connections of separated members. The design and analysis of these structures are generally performed by defining fully hinges for the connection of separated members at the joint of junction. In practice, these connections are not fully hinged. Therefore, the assumption of semi-rigid connections (restrained or partially fixity) instead of fully hinge connections is a more realistic approach for bolted connections used in the prefabricated elements. The aim of this study is to investigate the effects of semi-rigid connections on seismic performance of prefabricated structures. Nonlinear static analysis (pushover analysis) of a selected RC prefabricated structure is performed with SAP2000 structural analysis program by considering various partially fixity percentages for bolted connections. The target values of roof displacements obtained from the analyses according to ATC-40, FEMA-356, FEMA-440, and TEC-2007 codes are compared each other. The numerical results are given in tables and figures comparatively and discussed. The results show that the effects of semi-rigid connections should be considered in design and analysis of the prefabricated structures.

Analytical Study on Hybrid Prefabricated Retrofit Method for Reinforced Concrete Beams (철근 콘크리트 보의 보강을 위한 하이브리드 조립형 보강기법에 관한 해석적 연구)

  • Moon, Sang-Pil;Lee, Sung-Ho;Lee, Young-Hak;Kim, Min-Sook
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.71-79
    • /
    • 2020
  • In this paper, the hybrid prefabricated retrofit method that improve structural performance and reduce construction period was developed by using a finite element analysis. The hybrid prefabricated retrofit method consist of a Z-shaped side plate, a L-shaped lower plate, and a bottom plate containing an steel plate with openings. This shape has advantage that a retrofit method is possible regardless of the size of the beams and a follow-up process such as reinforcement bars placing are not required. The finite element analysis of hybrid Prefabricated retrofit method showed the most ideal stress distribution when the thickness of bottom plate was 10mm, the thickness of the L-shaped lower plate was 5mm, the thickness of the Z-shaped side plate was 2.5mm, and the bolt spacing was 200mm. The bending strength equation of Hybrid prefabricated retrofit method was proposed through the plastic stress distribution method in KDS 41 31 00. The result of Comparison the proposed equation with the finite element analysis, it is determined that the design of hybrid prefabricated retrofit method is possible through the KDS 41 31 00.

Comparison of Totally Prefabricated Bridge Substructure Designed According to Korea Highway Bridge Design (KHBD) and AASHTO-LRFD

  • Kim, Tae-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.4
    • /
    • pp.319-332
    • /
    • 2013
  • The purpose of this study was to investigate the design comparison of totally prefabricated bridge substructure system. Prefabricated bridge substructure systems are a relatively new and versatile alternative in substructure design that can offer numerous benefits. The system can reduce the work load at a construction site and can result in shorter construction periods. The prefabricated bridge substructures are designed by the methods of Korea Highway Bridge Code (KHBD) and load and resistance factor design (AASHTO-LRFD). For the design, the KHBD with DB-24 and DL-24 live loads is used. This study evaluates the design method of KHBD (2005) and AASHTO-LRFD (2007) for totally prefabricated bridge substructure systems. The computer program, reinforced concrete analysis in higher evaluation system technology was used for the analysis of reinforced concrete structures. A bonded tendon element is used based on the finite element method, and can represent the interaction between the tendon and concrete of a prestressed concrete member. A joint element is used in order to predict the inelastic behaviors of segmental joints. This study documents the design comparison of totally prefabricated bridge substructure and presents conclusions and design recommendations based on the analytical findings.

Digital engineering models for prefabricated bridge piers

  • Nguyen, Duy-Cuong;Park, Seong-Jun;Shim, Chang-Su
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.35-47
    • /
    • 2022
  • Data-driven engineering is crucial for information delivery between design, fabrication, assembly, and maintenance of prefabricated structures. Design for manufacturing and assembly (DfMA) is a critical methodology for prefabricated bridge structures. In this study, a novel concept of digital engineering model that combined existing knowledge of DfMA with object-oriented parametric modeling technologies was developed. Three-dimensional (3D) geometry models and their data models for each phase of a construction project were defined for information delivery. Digital design models were used for conceptual design, including aesthetic consideration and possible variation during fabrication and assembly. The seismic performance of a bridge pier was evaluated by linking the design parameters to the calculated moment-curvature curves. Control parameters were selected to consider the tolerance control and revision of the digital models. Digitalized fabrication of the prefabricated members was realized using the digital fabrication model with G-code for a concrete printer or a robot. The fabrication error was evaluated and the design digital models were updated. The revised fabrication models were used in the preassembly simulation to guarantee constructability. For the maintenance of the bridge, the as-built information was defined for the prefabricated bridge piers. The results of this process revealed that data-driven information delivery is crucial for lifecycle management of prefabricated bridge piers.